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ABSTRACT:

This paper sets out to provide a framework that enables the comparison of large, non-linear models of social interaction. The metamodel presented has the capacity to highlight the essential differences between several models – coming from different modelling strands and different modelling philosophies – that all are meant to be models of the same social dynamics. 

The pivotal idea applied is the introduction of a visual level of description of dynamic processes. So while there are quite different, and rather complex detailed dynamic interactions within each of the models to be compared, a visual dynamics metamodel (VDM) with clear-cut interfaces to each of these models can provide an intuitively appealing presentation of major resemblance and differences. Studying each model to be compared in detail, building up the human capital to become versatile in the respective methods applied, sources used, etc, usually is extremely tedious, if possible at all. On the other hand, after having gone through this painful process not much of this newly acquired human capital stock can be preserved in the final comparison of the investigated model variety – it usually takes place on a meta-level anyway. The introduction of a VDM therefore is straightforward: It provides the new meta-level in a standardised format, even new modelling approaches can easily be taken care of. But, of course, a concise statement of the concept of complexity is a pre-requisite for the possibility to reduce it.

Introduction

The starting point of the research reported in this paper is rather trivial: There is an avalanche of models for social dynamics being constructed and further developed, many of them aiming to mimic the same social process. And there are a large number of political and economic decision-makers at all levels of hierarchy, who never were (and never will be) exposed to a professional education in model building. Therefore the latter are not in a position to judge the advantages and disadvantages of certain models, in most cases they can’t even appreciate the differences – luckily, as a cynic model-builder recently added.

Professional model-builders are not inclined to go into comparisons too, most of them are involved in expanding their own approaches. The large human capital investment needed to digest the many hours other research teams spent in developing their approach do not promise sufficient return. If they are wrong, then studying their work was wasted time – and if they are right, then everything I have done has been wasted time! A sure loss of human capital is not what makes an activity particularly attractive.

In what follows we report some results of a research project, an extraordinary opportunity given to us by the Austrian National Bank to develop a meta-model that compares macroeconomic models with respect to their implications for monetary policy. In the end, such a meta-model should do the unattractive job described above. Moreover it should include a visual interface to enhance the communication with users that are not model-builders themselves.

In developing this meta-model we had to discuss some of the more basic questions of model building and complexity. The larger part of this paper will present what has turned out as an original approach to these fundamentals. The rest of the paper gives a preview on the next steps and discusses some ideas on visualisation.

On model building

Dynamic models consist of five types of variables and two types of relationships between these variables:

· endogenous variables,
· exogenous variables,
· controlled variables,

· goal variables, and

· auxiliary variables

are linked either by 

· static relations or

· dynamic relations.

The trajectories of the endogenous variables can be determined if the information provided by the trajectories of exogenous and auxiliary variables and by the set of relations is appropriately specified. To find these trajectories usually is called to solve the model. Even with appropriate information on exogenous variables and relationships analytical methods often will be insufficient to solve a model, but in these cases approximation techniques sometimes will provide preliminary results.

Which variable is to be considered as endogenous and which one as exogenous is a choice made by the model-builder. Indeed, the model-building process – in particular in the natural sciences – has been understood as the search for relationships that enable the interpretation of variables as endogenous variables: Knowing all but one variable in a relationship (i.e. the exogenous variables) determines the value of this variable. In the natural sciences the successful
 postulate of such a relationship has sometimes been named the discovery of a law of nature.

Note also that this process of postulating relationships does not take the set of variables on which it operates as given. It rather starts with a large set of measured observations as candidates for variables
. Since they all had assumed a range of different observed values in the past, ex post their status with respect to postulated relationships (i.e. if they are endogenous or not) is not determined. It is the art of modelling that assigns this status. The heuristic procedure to eliminate all the variables of the large set that do not enter the postulated relationship has (somewhat misleading) been called “Occam´s law”.

Since measurement constitutes prospective variables and measurement at different points in time takes time, the model-builder nevertheless usually has a limited set of already available variables at her disposal when she starts model building. Measurement itself has often been guided by past model building and current model building will call for the measurement of observations that will provide future variables. This borderline between measurement of observations and the model-building process is the semantic frontier of model building. It is semantic in the sense that the variables which are part of model building refer to something that is not part of model building, namely past observations.

On the other hand the same variables are elements of a modelling language, i.e. a set of rules that combines variables and so-called operators. Operators in the broadest sense mimic the change in the values of variables. E.g. taking away a certain quantity of corn from a larger quantity of the variable “stored corn” changes the value of this variable – subtraction. Or, in everyday language, driving from one city to another changes the value of the Cartesian location of the driver – in everyday language verbs are operators. The grammar of the model-building language, its rule set, therefore is another pre-condition that shapes the model-building process. Again grammars are not to be taken a given. There is not only a wide range from everyday language via algorithmic languages to mathematics, each of these possible languages itself permanently develops. Analogue to the previous paragraph the borderline between the restrictions of the grammar of the model-building language and the model-building process itself is the syntactic frontier of model building. It is a frontier as far as model-builders urge for further development of languages to enable more adequate models
.

But the search for relationships - for combinations of operators that mimic changes in measured values of observed variables more adequately – is itself also pre-conditioned by the use that the model-builder expects to derive from building her model. If a relationship is adequate, in the sense that it mimics past developments sufficiently, is only one side of the medal: If Gay Lussac´s law predicts the relationship between pressure and heat in a closed vessel correctly is one side, the development of the steam engine is a different side. Model-building itself is part of the human metabolism; it contributes to the growth of the Homo sapiens. Therefore variables used in models not only can be distinguished according to their model-status (endogenous or exogenous), they also can be classified with respect to social entities using the model. If the value of a variable can be directly controlled by the social entity or not, and if the value of a variable enhances the metabolism of the social entity or not are the two criteria that produce the classes of controlled variables and of goal variables. Those variables that are neither did not control variables nor goal variables are lumped together in the class of auxiliary variables. Since this last classification works on the level of metabolisms its effects are clearest when applied to relationships in a domain outside metabolistic interaction – in physics. The use of physical laws – the utility increase measured by the values of goal variables and achieved by the controlled steering of instrumental variables – has become the flagship for the drive towards science in general and model-building in particular. 

Unfortunately metabolistic interaction, starting in biology and exploding in human societies, complicates model-building tremendously. As evolutionary game theoretic models in biology have shown, mutation and selection working on different levels might imply measurable goal variables of the species, which contradict developments of goal variables of many individual representatives of the species – working behind its back, so to say. For certain environments the species thus evolves as if a law of maximum enhancement had been implemented – Darwinian selection substitutes the optimal planner – while evidently no animal is an advanced model-builder with goal variables and instrumental variables. The choice of entity for which a model is built is fundamental and non-trivial. And, as in the case of biology, the entity for which the goal variable is maximised (the species) need not even exist as a conscious physical unity. 

Problems get worse with human societies. Not only are social entities as interdependent as their goal variables and instrumental variables – their model-building processes are interdependent too
. Building a model of this domain thus needs to take care of the structure, goals and instruments of social entities as well as of the models that each of these social entities uses to determine its actions. As I have argued elsewhere [Hanappi, 1994] this leads to an infinite regress that only can be overcome by a careful introduction of constraints on information processing capacities of social entities. This, of course, is a further borderline for model building: The exploding demand for hard-to-measure information and modelling assumptions concerning the modelled social entities themselves. On the one side of this border is the model-builder with her own goal of producing a useful model with available instruments and within a reasonable time span, on the other side there usually is an enormously interwoven network of social entities (to be modelled) that entertain models themselves – this is the pragmatic frontier of model-building.

The pragmatic dimension refers back to the semantic frontier in that both have to incorporate the concept of time as a basic ingredient. While in the semantic domain the very existence of essential variables was based on their observation over a time-span, the pragmatic realisation of the time consuming character of model building implies that relative time used by metabolistic activities has to enter the model-building process explicitly. Specialised syntactic features of the model language capture the relative time used by activities. The use of present tense, past tense and several other modifications of verb operators help to frame this problem in everyday language. In mathematical modelling the syntax of difference-differential equation systems still is the standard approach. In algorithmic languages the execution of the algorithm over time enables simulation of the modelled time structures with modified scope and scale. In all of these cases the common label of a relationship with explicit time structure is “dynamic relationship”.

Indeed, twentieth century physics has shown that time equality is a meta-physical concept
 – from a non-pragmatic point of view all relationships are dynamic. Only the pragmatics of scarce time for model-building and model-use can justify the introduction of static relationships, namely as long as the time occurring in these relationships is so small relative to the rest of the system that the necessary error made appears less damaging to the metabolistic contribution than further model-building scrutiny
. Static relationships in this proper sense have to be distinguished from defining grammatical relationships, which simply give new names to sets of other names (including names of operators). The latter are elements of syntax development working on the syntactic frontier without reference to a time structure. They are the source of auxiliary variables.

Extremely fast relationships (relative to the environment’s dynamics) thus give rise to the use of static relationships in models just as extremely slow (and/or weak) relationships enable the assumption of independent processes within a given time frame. Note that this last mentioned notion provides the possibility that a process influences the endogenous dynamics of a model without being in turn influenced by it – the possibility of exogenous dynamic variables. Identifying the set of endogenous variables thus comes up to the question of isolating variables that do not exert strong influence on variables that strongly influence them
. So while in the first step the pragmatic aspect – what (and for whom) is the model built for – provides goal variables and instrument variables, at second glance the need for isolation usually will force the model-builder to enlarge the set of variables by some exogenous variables. Quantification of the level of goal achievement as well as quantification of the values of instrument variables is very plausible, in the case of the newly introduced exogenous variables this might lead to additional work along the semantic frontier. Explicit formulation of relationships finally falls back on the possibilities of modelling languages – auxiliary variables and occasional work along the syntactic frontier are emerging
.

For models of human social interaction further complications have to be taken into account. To name only a few:

· The structure of social entities – actual and as perceived by these entities – maintains a rule set that adds man-made laws to the set of physical laws.

· Unlike physical laws these laws are (and will be) the results of a historical, goal-driven and stepwise process. Model building thus has to be explicit about acceptance or non-acceptance of traditional man-made rules – a claim most forcefully made by the so-called institutionalist school in economic theory.

· Modelling capacities of the involved social metabolisms lag more and more behind the high degree of the actual complex relations they engage in. Along the pragmatic frontier they tend to ever simpler and more inadequate models “that work somehow”. Inadequacy occurs as surprising shake-up, and not as a process that stimulates continuous improvement of models
.

History and the structures it produces – in power relations (institutions) as well as in communication capacities – has to be taken serious. This is the most urgent single agenda for model-builders derived from this little tour de force through the world of model building. Given the high complexity
 of these structures it is evident that decision-making social entities use short cuts to arrive at feasible conclusions within reasonable time. The proposed Visual Dynamics Metamodel (VDM) is an attempt to close the emerging gap, to provide systematic and informed support for necessary short-cuts - or, to use the concepts developed above, to shift the pragmatic frontier of model-building outwards. 

This is accomplished by the use of formal algorithmic languages on the input side of the process, where varieties of detailed models (constructed by special research groups in the area concerned) are offered to the decision-maker. The available syntax, the standard achieved on the syntactical frontier of model building with algorithmic languages, thus is incorporated. 

On the output side of the Visual Dynamics Metamodel the interface between the comparing devices of the VDM and the human decision-maker can be interpreted as the attempt to work on the semantic frontier of model building. It aims at involving the human decision-maker in a dialogue that starts at her own premises (the goal variables and instrument variables she suggests) and - on provoked request - leads her through the details of answers implicit in the different input models. Due to the limited mathematical expertise that can be assumed for the average decision-maker, a visual interface is provided by VDM. The semantic problem is to transform dynamic properties of formal systems into visual, and in the sequel mental representations that are at the same time intelligible for the decision-maker and sufficiently correct with respect to the underlying input models.

The model-building procedure outlined above can be schematically summarised as follows. Start with a pragmatic question
 and formulate two sets of candidates, one for goal variables (G1) and one for instrument variables (T1). In a simple matrix for types of variables this is shown in figure 1.

VARIABLES
Goals
Instruments
Auxiliary

Endogenous
G1



Exogenous

T1


Figure 1: Model building, step 1

Note that goals are classified as endogenous, since the (pragmatic) reason for using a model is to find out which values goal variables will assume if the model assumptions are valid. For a similar reason instrument variables are assumed to be exogenous. If, e.g. the goal variable is the time when I arrive at the train station and the instrument variable is the time when I get up in the morning, then I usually assume that I control the latter. And if I consciously set my wake-up time, then it is exogenously given and not determined by the model
. Of course some other control variables may come into play too, being part of T1. How fast I move to the train station may be one of my instruments too. But if I assume that my speed (via a modelled relationship) depends only on my wake-up time (e.g. early wake-up induces slow moves), then it is not a controlled variable any more (T1 becomes T2). It enters the set of auxiliary endogenous variables (A1). Some other environmental circumstances might be important too, e.g. a general traffic jam index that influences my speed. Such variables that are not auxiliary due to a model relationship, but enter directly with their values belong to the set of auxiliary exogenous variables (X1).

Specifying a relationship that links instruments with goals therefore usually involves the introduction of auxiliary variables of both sorts. The relationship at this stage will always be a dynamic relation, e.g. wake-up appears earlier than arrival, the time I receive the traffic jam index has to be specified, etc. Having formulated this dynamic relation produces the state depicted in figure 2

VARIABLES
Goals
Instruments
Auxiliary

Endogenous
G1

A1

Exogenous

T2
X1

RELATIONS
Linear
Non-linear

Dynamic
R1


Static



Figure 2: Model building, step 2

It is remarkable that most model-builders – scientists as well as others using everyday language – start with linear relations between variables (R1). As John Hicks from a history of economics point of view once remarked [Hicks, 1969] this linearity in the twentieth century mostly assumed a linear relation between growth rates (log-linearity in absolute levels), i.e. growth in goal achievement is thought be (possibly negative) proportional to instrument growth. In some cases it is not only sensible to start with linear relations, but it also is sufficient for the  (pragmatic) purpose of the model – and as the last example showed a clever choice of variables can transform a simple non-linearity in a linear model. But in most other cases non-linearity will be unavoidable, at least after a more thorough treatment in step 3 of the model-building process
. 

Where does non-linearity come from? In most cases, at least for models of human social interactions, it arises from the existence of thresholds of functional relationships – functions are only defined over a certain range of values, then jumps appear
. Such discontinuities are a special type of non-linearity, but the usual type of non-linearity might exist as well. In particular a social system approaching a threshold often will start to behave non-linear if agents perceive the approaching border. On the other hand the standard argument for the use of linear forms is that they are approximations of “well-behaving” non-linear forms within small intervals. The problem is shifted to the choice of a small enough interval. But in the argument developed here the time frame comes from the pragmatic question the model is built to answer – and cannot be chosen arbitrarily. There always will be non-linearity if the problem is looked at close enough. Sticking to linear relations is similar to moving to static relations: if the refinement of a non-linear formulation is not expected to outweigh the trouble it causes, then it will not be chosen - just as the gain achieved by retaining the dynamic relation might be neglected if the time interval involved is small enough (with respect to the other time intervals of the model) to justify a move towards a static relation.

In general model refinement thus will subsequently yield relations of all type combinations, as it will alter the sets of variables (figure 3).

VARIABLES
Goals
Instruments
Auxiliary

Endogenous
G2

A2

Exogenous
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D
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N

Figure 3: Model building, step 3

As argued above, consider now the fact that model building in human social systems is omnipresent and that therefore any model-builders model will contain a sub-set of (probably mis-specified) models of all other model-builders. Of course, the other entities variables and relations have to be added to the respective cells in figure 3 – paying due attention to their proper place in the dynamic working of the algorithm that combines them. While for most cases this is the end of a possible analytical mathematical treatment, still the standard formal tool in economic theory
, it is just the starting point for most real world decision-making problems. At this point of the argument the notion of complexity enters the scene.

From complexity to visualisation

Complexity not only is a term, which is used rather inflationary in sociological and in particular socio-technological circles. It recently also has been the subject of serious and extensive research of transdisciplinary groups of mathematicians, natural scientists and all kinds of social scientists at the Santa Fe Institute
. Apparently there is a large amount of different definitions of complexity as there is a diverse common understanding what the concept should describe. For the purpose of this paper a somewhat adapted definition of complexity taken from John Casti [Casti, 1989, pp. 410-425] will be used. The idea is that

(1) relations with more variables are more complex,

(2) relations belonging to the sets S, N, R2 and D in figure 3 have a complexity index C that assures for every relation R: 

C(R(S) < C(R(N), C(R(S) ≤ C(R( R2), C(R(R2) < C(R(D), C(R(N) ≤ C(R(D);

(3) the complexity of two relations is less or equal the sum of the complexities of each single relation, and

(4) the distribution of the strength of relations produces additional complexity as it moves towards a more equal distribution
.

To make this definition plausible take a look at the following directed graph that represents a simple dynamic system.



Figure 4: Directed graph of a dynamic system

Assume V1 is a goal variable, V2 is a control variable, V3 is an endogenous auxiliary variable and V4 and V5 are exogenous auxiliary variables. Vertices thus represent variables and arcs connecting them represent relations. The number of variables as well as the number of relations in this system is five. The question to be answered is how its complexity can be measured.

Start with the simplest sub-model, e.g. the two vertices V2 and V3 and the relation R1 that connects them. Assume for a moment that V3 is a goal variable and that R1 is linear. In this case these three elements surely present the least complex non-degenerate system
. Assume therefore without loss of generality that its complexity measure is 1.

Now add another node to discuss increased complexity. There are three possibilities with two relations shown in figure 5:




5a)                                               5b)                                                                5c)

Figure 5: Three-node cases with 2 relations

Note that if arcs were not directed they could not be distinguished. But with dynamic, directed arcs it is evident that the vertex in the middle can receive 2 inputs (5a), get one input and send one output (5b), or send two outputs (5c). Remember that nodes represent variables, i.e. observations of measured values with measurement taking place at specified points in time, and relations are taking time. So the three cases are really different: The vertex in the middle changes its value either after the two others (5a), before them (5c), or in between them (5b). Only case 5b depicts a temporal chain of events, whereas in the other two cases two influences either are caused simultaneously by the same source or are received simultaneously at the same vertex. To deal with simultaneous processes can plausibly be considered as more complex than situation 5b. Therefore (with linear relations) case 5b will be considered as being of complexity 2, while cases 5a and 5c will be attributed complexity 3. Defined more precisely, the criterion for the increased complexity of the latter two cases is that more than one arrow enters, or more than one arrow departs from a node
. A vertex for which the latter condition holds is called a complex vertex
. Looking back at condition (1) these assumptions clearly meet it.

The extension of this quantification of complexity for additional nodes and relations is evident. To compute the complexity index of a given graph with linear relations just count the number of relations and add the number of complex vertices. This index, call it 
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, then measures what could be called structural complexity.

Turning now to the possible non-linearity of relations it is easy to accept that for social entities the processing of non-linear relations usually is far more difficult than the processing of linear ones. So if a model contains non-linear relations a simple procedure to account for their contribution to complexity is to use an index of the force of computational complexity: One plus the number of non-linear relations of the model divided by the total number of relations
.  

Since computational complexity is closely linked to the information processing capacity of the entity using the model, it highlights a point usually made in the literature on complexity: To a certain extent complexity has to be understood as relative complexity. The same model that appears as rather trivial to an experienced user of sophisticated models appears as highly complex for a novice in the field. Indeed at first sight of a medium-sized, new model even the opposite judgements of novice and expert might occur. In the working definition of complexity proposed in this paper relative complexity is taken care of by the introduction of an entity-specific coefficient in front of the share of non-linear relations used for the computational complexity index. This so-called expert index ranges from zero to an arbitrary high number. Notice the clear-cut difference made between complexity coming from the model itself and the complexity arising from the model user’s relative ability to understand the model. Let 
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be the force of computational complexity, 
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An important problem has not been touched yet – cycles of arcs. As the proposed approach insists on time consistency of graphs it excludes the possibility of cycles. An early node cannot be at the same time a node at a later point in time – the argument is analogue to the one used for extensive forms in game theory. Though notational convenience allows this procedure in other graph theoretic contexts, it is only confusing for the purpose at hand.

Nevertheless, in the real processes modelled the values of observed variables are often repeatedly visited and measured. Analogue to the semi-reduced form equations in mathematical language one could enter the old value of a still existing variable X as the value of a new exogenous variable Xt-1. Inserting it in the graph produces a larger graph (figure 6).












Figure 6: Cycle handling

The example shown in figure 6, of course, shows just one way of further expansion of the logical shorthand notation on the left. It might as well be adequate to expand several rounds of the circle with the exogenous variable V5 only coming in after the last round. The result of cycle handling is a two-dimensional diagram with variables on the vertical axis and time running from the left to the right
. Arrows thus always have to point to the right. A careful handling of this procedure sheds some light on several aspects usually found in models of social dynamics:

i. The exogenous variables of the model will themselves be endogenous in a larger, long run model. In the larger model there might even be a long-run feedback from the shorter-run model investigated. To include part of the larger model dynamics without introducing its structure usually is called introducing a trend. Relation R7 linking exogenous variable Vt-14 with its past Vt-34 in figure 7 is an example for a trend.





Figure 7: Trend

If a trend relation of an exogenous variable does not change over the time range of a model, then it adds only this one relation to the computation of the index of structural complexity.

ii. Another interesting possibility is the interpretation of equilibrium conditions as limiting cases of converging high speed cycles.





Figure 8: High-speed cycles

If the time unit of the model can be assumed sufficient large relative to the cycling time, and if the processing of the cycle is assumed to converge to a certain set of values of the involved variables
, then the cycle can be replaced by a static equilibrium relation that provides the relation between the equilibrium values of these variables (figure 8). Clearly, such an assumption reduces the number of relations dramatically. As a consequence, equilibrium conditions have to be considered as extremely strong assumptions and can only be used with extraordinary care
. Equilibrium relations and syntactic definitions of new variables thus are the sources of static relations in models. The convention for taking account of static relations in the proposed complexity measure is as follows: Static relations raise the number of relations (used in the computation of structural complexity) in the same way as dynamic equations do, and non-linear static relations enter the index of computational complexity also like dynamic non-linear relations. The lower complexity of systems with static relations only is owed to the reduction performed by eliminating high-speed cycles
. Note that this convention exactly meats condition (2) mentioned above. Condition (3) is also met, the case of strict inequality being relevant precisely in the case of static equilibrium relations.

iii. It is desirable to take account of the fact that instrument variables and goal variables in models of human social dynamics refer to the same social entity – and the notion of cycles provides a natural way to do so. Consider the repeated use of a model. In that case the goal achievement of the last use will influence the current setting of instrument variables. This is exactly what the pragmatic frontier of model building is struggling with, the pragmatic cycle. Expressed more radically, if one accepts the view that social entities are constituted by their intentional behaviour, then the central condition for the existence of a social  entity is the existence of this special cycle! Consider figure 9.













Figure 9: Social entities
The story of figure 9 is as follows: A social entity has two types of devices at its command. On the one hand it uses instruments to achieve goals in the ongoing real world processes (this interaction has been called metabolism in the preceding  section), these are represented as goal variable V1 and instrument variable V2 in figure 9
. On the other hand it uses a model M that informs its choice of instruments, which is sketched in the upper half of figure 9. The cycle of conscious intentional behaviour of a metabolism consists of maintaining the feedback look in both spheres, updating physical behaviour as well as the model of it. Turning the argument around, one could define the existence of such a double updating procedure as the minimum requirement for conscious social entities. The bracket in the upper left corner of figure 9 shall indicate this idea. 

With physically limited information processing capacities (IPC) the need for reduction of complex real world processes becomes mandatory for the social entity. But this does not mean that it is independent of its usability for the physical metabolism. Quite the contrary is true: Mental models are extended if physical processes are not consuming all available time, and their growth slows down if their application does not promise at least long-run advantages for the metabolism. To save IPC social entities have developed tool-kits consisting of typical partial models, which they can combine via analogies to form new models
. And they developed devices to transfer and to store models outside their limited mental setting – language, education and traditional behaviour. A closer discussion of these implications clearly goes beyond the scope of this paper.

iv. Returning to the use social entities make from model-building it is evident that (compare again figure 9) they try to predict future implications for goals that they might induce by the choice of current instruments. In the rather rigid framework introduced so far two possible situations can be distinguished.

Either goal achievement was satisfactory in the last period - traditional behaviour works - and assuming a set of most probable trajectories for exogenous variables will provide enough information to use the current model to derive ‘optimal’ values of current instruments. Note that in this case prediction goes as far into the future as the current model looks back.

Or, goal achievement was disappointing. In this case some kind of model revision will be initiated. Since this procedure can mainly be informed by model revisions carried out in the past, social entities have to use a much longer history to proceed. Long-run considerations and ambiguous short-run guesses are the prevailing attitudes in this case.

Moreover in many areas a major obstacle for accurate prediction has evolved in the last decades: strategic interaction. If the processes of political economy become more and more interwoven – and the recent past has seen a quantum leap in this respect – then everybody’s need to predict the behaviour of many other agents just to pursue the own goals produces highly volatile macro-behaviour. Recent developments in game theory often comment on - and mirror - this tendency of modern society
.

The discussion of cycles thus has been used to embed the proposed notion of complexity in a variety of contexts usually discussed in this area of research. Edmond Bruce [Bruce E. 1995] has collected many dozens of different definitions of complexity to show how broad and how different the concept is understood in science only
 – not to speak of everyday language. The definition used here covers many of the aspects mentioned in other definitions, but not all of them.

The last condition not incorporated yet, condition (4), can easily be brought into the picture now. Remember that the focus is on models of human social dynamics. Remember also that the strength of a relation from the point of view of structural complexity should be independent of the single subjective valuation of the model-builder. Important arcs between nodes therefore should be those with high social significance, i.e. with high social value. In economic contexts money is the medium in which social value, call it v, is measured, and it is thus straightforward to use the money value of arcs (with the help of the concept of opportunity cost, if necessary) to measure their importance
.

Assume now that each relation Ri has a weight wi that expresses its share in the total social value of all relations.
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The basic idea now is that a model which needs only a small proportion of its relations to describe a large part of socially important connections is less complex than a model which has to make use of a larger proportion of its relations to describe the same large part of socially important connections. The simple convention proposed to compute the contribution of more equally distributed social value of relations to structural complexity is to use the Gini ratio. For n relations and value ratios as defined above, the Gini ratio between the share of relations and their contribution to total social value is defined as
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It is zero if all relations are of equal importance and it is approaches one if social value becomes unequally distributed. Since complexity should be high in the former and low in the latter case the complexity measure for the force of distributed importance, 
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With this definition condition (4) is satisfied.

Taking all elements of the argument together, the complexity of a model can be quantified as follows. First compute structural complexity, 
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, by counting relations and complex vertices. Then use the force of distributed importance, 
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, just discussed, and the force of computational complexity, 
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, discussed before, to compute overall complexity 
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Finally it has to be mentioned that one strand of complexity definitions is not really covered by this approach, namely those definitions that relate the number of possible states of a system with its complexity. More complex systems are assumed to permit more possible states. Note that the simple logistic equation can produce an infinite number of states; it therefore, from this point of view, is infinitely complex. From the view of the approach proposed here, it is not sufficiently specified – and this seems to provide much more operational insight than approaches of the former mentioned type.

Having taken this rather painstaking detour to define complexity, it now is rather simple to use the results to derive the rest of the conclusions of this section. First one realises that comparing different input models via a meta-model implies the reduction of the complexity of these models. Only then common features concerning common variables can be contrasted. But reducing the complexity of an input model is not a trivial task if one accepts that the experts who constructed this model already used Occam’s razor. As a consequence guidelines for complexity reduction are badly needed.

Fortunately enough, such guidelines can be derived during the second stage of complexity reduction, namely the inference of the goals of the person performing the comparison. Finding out which instruments and goals are of special interest for the comparison, it can be possible to eliminate aspects of the input models that lay emphasis on less interesting variables. The following two stages of complexity reduction therefore are only conceptually distinguished – in the comparison procedure they are intimately interwoven.

At stage one the variety of highly complex input models from different modelling strands has to be transformed to enable a comparison on a common level of lower complexity. Stage two faces the pragmatic aspect of communicating this comparison to a person of limited modelling expertise, but with emotionally loaded attitudes towards certain sets of goal and instrument variables. Again complexity reduction, but now enriched by visualisation, must be provided.

As a consequence the software solution of the meta-model will use a dialogue with the policy-maker to detect the major objectives of the comparison, while at the same time it will use complexity reduction (along the lines described above) to deliver preliminary results for the dialogue. E.g. eliminating relations with low social value, or with less importance for the policy-maker will be a possible strategy as well as transforming non-linear relations into linear ones if a low expert index for computational complexity is detected. Evidently it might also occur that a model is inadequate for the problems as viewed by the policy-maker. In that case an appropriate message will signal that this model will not be included any more in the comparison. Of course, investigating just one model is a special case and will also be possible.

With respect to visualisation it is clear that the concise graphical representation of the reduced system (as given for example in figure 9) will be on one end of the dialogue. A few possible standard sets of presentation will be on the other end. During the dialogue itself the user will be able to determine where on the line between these two extremes the mode of visualisation will settle – accommodating the policy-maker’s visual aspiration level. According to this process the complexity reduction of stage 2 will have to work: The further away from the concise graphical representation, the more complexity will have to be reduced. Though this cannot be done without limits, the complexity reduction procedures will also be equipped with sensitivity borders. If an extremely dull visualisation is asked for, the software will be able to refuse its execution – with a polite message of course.

Conclusion 

The development of the meta-model just described is part of a large research project for the Austrian National Bank. The more general approach taken to solve problems of comparing different macroeconomic models, in particular with respect to monetary policy, has been the outcome of many thorough discussions in the first phase of the research project. Thinking of the large variety of models currently developed, of their different micro- and macroeconomic aspirations, led us to the discussion of complexity in general. But complexity cannot be discussed without an appropriate language that encompasses the definitions applied.

Two routes were open to follow. On the one hand, mathematically oriented complexity theory already has developed a wealth of notation and theorems, often based on graph theory and theoretical computer science. It usually becomes particularly interesting if research manages to build bridges between these two sources – but it is hard to penetrate into these insights without losing the more pragmatic goals of the research project out of sight. Nevertheless the recent hype about the so-called ‘Small World Hypothesis’
 seems to promise some fruitful insights to be used for our research too. In particular stage 2 of complexity reduction for visualisation seems to be a promising field for looking for ‘small worlds’.

The other route was to stick to the world of the monetary authorities and to simulate existing phenomena as close as possible. By doing so, one could hope to discover the relevant vocabulary, relations and time frames as they enter the models of the decision–makers themselves. E.g. their goal variable is low inflation and their instruments seem to be given, that’s a start. Adding a little bit of state of the art macro-theory then might provide ideas on complexity from bottom-up.

In the end we took both routes simultaneously – and in the meantime it seems that this was a correct decision. Meta-models of the kind that currently is developed are designed for broader use than just for the single original application. But to achieve that, one has to start with just a single task – more general considerations follow instantly. The pragmatic frontier mentioned above - a far cry from Peirce - seems to be the most prosperous border with respect to semantics too. But we still are not able to add much at the syntactic frontier where we simply use existing tools. Visualisation, the field we have advanced the least till now, seems promising – though in a direction rather different from the one currently supported by the mainstream: We do have windows to look through, but we need the doors to walk through.
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� What the adjective “successful”means in this context will become clear below.

� The distinction between “qualitative” and “quantitative” methods is evidently dubious: “The measure is the qualitative quantity.“ as Hegel once put it [Hegel, 1970, pp.224].

� A famous example is J.v.Neumann´s and Oskar Morgenster´s introduction to their pivotal book on the theory of games [v.Neumann J. and Morgenstern O., 1944].

� This makes a difference to the animal kingdom, where model building – if it is ascribed to animals at all – is rather hardwired and cannot make use of a developed language.

� Compare for example [Heisenberg W., 1973, pp.74-100].

� Note that here dynamics is the standard case and statics is the extension due to pragmatic reasons. Compare the analogue treatment of the so-called adiabatic equations in Haken´s synergetics [Haken H., 1983].

� Variables that are influenced by the current set of endogenous variables but do not feedback into this set will be included only if they are goal variables.

� The co-evolution of classical theoretical physics and calculus is a striking example.

� This type of smooth evolution for a long time was the paradigm of mainstream Darwinism in biology.

� A precise measure for the degree of complexity is given in the next section.

� A nice description of the model building description including this first step is given by Hal Varian [Varian H., 1997].

� Indeed there is a subtle twist in the argument: If I believe in the model and solve it for the optimal arrival time, then the optimal wake-up time is determined by model choice. For the moment assume that models are only tested and not yet believed in.

� Richard Goodwin argued that the major methodological impact that enabled him to formulate his famous growth model came from a lecture given by Le Corbellier that he attended. There he saw that in physics it is sometimes useful to go directly to the non-linear case.[ Goodwin R., 1988, p.20]

� Social institutions (including individuals) use sensitivity borders that determine whether certain influences are recognised at all, or with which type of measure they have to be encountered. Such sensitivity borders are a typical source of non-linearity – and well documented in cognitive science. They save information processing capacity, the limited availability of which is the more general reason for non-linearity in human social systems (compare [Hanappi,1994]).

� The founders of game theory clearly thought that it should be a first tool to deal with these difficulties. And as Martin Shubik, a witness of these early years, correctly insists, it will play a basic role in any further formal development to describe social dynamics [Shubik M., 1998]. Some other model builders consider game theory as a dead-end and rather subscribe to a object-oriented-programming based research program (compare [Moss S., 2001]). From the point of view of research methodology the OOP approach falls back on Wittgenstein’s logical a-priorism [Wittgenstein L., 1921] – this was where the critique of strategic dynamic approaches (including Wittgenstein’s own later oeuvre) started.

� See [Casti J., 1992, pp.1-52] for an introduction.

� For a more detailed treatment of the importance of the strength of relations compare [Casti J., 1979, pp.100-106].

� Note that according to the assumed primacy of dynamics the relation R1 is dynamic.

� Using the general function form of the language of mathematics: (V3(V2, V4)( in case 5a is assumed to be more complex than (V3(V2), V1(V3)( in case 5b. In simulation language 5a needs additional specification how the two linear influences on V3 combine – i.e. additional complexity.

� This definition only distinguishes between nodes with at most one input and at most one output as opposed to all other types of numbers of in- and outgoing arcs. (A node with no arcs is never part of a system.)

� Again, this simple procedure does not further distinguish between degrees of non-linearity – but a respective generalisation would be obviously easy.

� It is interesting that one of the fathers of econometrics, Jan Tinbergen, used such diagrams many decades ago.

� The obsession to focus economic theory only on converging dynamics thus is just an obsession to use a certain technical device to achieve the reduction of complexity.

� Contrary to common understanding in mainstream economics, a ‘general equilibrium model’ is not a model of particularly high quality – it rather is a model with infinitely strong (and therefore infinitely misleading) assumptions.  

� Put the other way round: A system can be made arbitrary complex by the introduction of superfluous static definitions. In that way Occam’s razor might regain importance.

� The only additional relation in this model is a static relation between V3 and V4.

� That innovations are just creative ‘new combinations’ of old parts and pieces is a view borrowed from Schumpeter [Schumpeter, 1939].

� See [Skyrms B., 1996] and [Albin P.S., 1998] to name just two examples of an exploding amount of literature.

� His work is available on the Internet: http://www.cpm.mmu.ac.uk/~bruce/.

� Evidently a caveat is necessary: There are some important social dynamics that are not easily amenable to monetary measurements. But for the large majority of problems in political economy, I insist that the measurement of money equivalents is the best approximation of social value that we can get.

� The best source still is the classic [Watts D.J., 1999].
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