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Abstract Financial bubble is an intensively discussed but quite controversial topic.
In current literature, the researches usually focus on the (ir)rationality of traders and
its impacts on the bubble. We thereby propose a completely different perspective,
that is, of traders’ heterogeneity and its impacts on the formation of bubble in finan-
cial markets. As in the real financial markets, the agents are always heterogenous.
For example, some of them are fundamentalists, some are chartists, some are noise
traders, etc. To model the heterogeneity of agents in the real markets, we proposed a
multi-agent model to control the constitution of traders. Based on four scenarios with
different constitution of traders’ behaviors, we investigated three extreme situations
where the market is occupied by homogeneous agents (no matter they are fundamen-
talists, chartists or noise traders), and one scenario where the market is made up of
heterogeneous traders. By applying Log-Periodic Power-Law (LPPL) model, We stud-
ied the impacts of different investors’ behaviors on the bubble formation in the market
and found that: (a) the public information has an important influence on the begin-
ning of a bubble; (b) traders’ different expectations and their self-feedback is one of
reasons for the existence of log-periodicity in bubble; (c¢) the existence of power—law
growth and log-periodicity, which leads the probability of prediction for the bursting
of bubble, is caused by the combined effects of public information, traders’ different
expectations and their self-feedback.
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1 Introduction

Financial bubble, which seems as old as the history of financial market itself, is always
one of intensively discussed but highly controversial topics. In history, a burst of major
bubble was always accompanied with an economic recession and caused a huge loss.
However, before our further discussion, there are some important questions waiting to
be clarified: what is a bubble? what can cause a bubble? To be more specific, is traders’
heterogeneity a cause of the bubble? There is still no generally accepted definition in
economics. It is usually described as a large and unusual deviation from fundamental
price (Stockl et al. 2010). In recent literatures, a large and growing numbers of papers
focused on studying the ‘rational’ bubble (Gizrkaynak 2008), which can be rational
deviations of the price from the fundamental value (Blanchard and Watson 1983).

In the existing literature, the researchers usually focus on the traders’ rational or
irrational expectations on the bubble, however, few can offer the answers to the prob-
lems. The traders are usually heterogenous, e.g., there are fundamentalists, chartists,
noise traders, etc, in a real market (Chiarella et al. 2009). One of the difficulties in
quantifying the heterogeneity is to study the influence of different constitution of het-
erogeneous traders on the bubble dynamics. In this paper, Our main purposes focus on
these questions: Is the constitution of heterogeneous traders one of reasons for bub-
ble? If so, what are the different patterns of bubbles caused by different constitution of
heterogeneous traders? In order to answer these questions, we investigate the dynamic
cause and underlying mechanism of bubbles from a heterogeneous agent perspective.

By changing the parameters in a multi-agent model we propose, we can easily con-
trol the constitution of the traders. We generated four scenarios by simulations of multi-
agent model:! three homogeneous scenarios, in which the traders’ behaviors are mainly
influenced by either Price Tendency, or Public Information, or Noise Information;
meanwhile, as a comparison, we also set an integrated scenario, in which the traders
are heterogeneous, making decisions based on different information sets, namely,
Price Tendency, Public Information and Noise Information, respectively. Through
simulations, we investigated homogeneous and heterogeneous traders’ behaviors on
the market.

In order to measure the bubble, many econometric tests of asset price bubbles have
been proposed, such as variance bounds tests (Shiller 1981), two-step tests (West
1987), integration/cointegration based tests (Diba and Grossman 1987, 1988), Intrin-
sic bubbles (Froot and Obstfeld 1991), etc. However, even for the same period of
bubble, different methods give complectly opposite results, and all of these methods
fail to detect whether there exists a bubble (Gfirkaynak 2008). At the same time, in
experimental context, many alternative measures have been proposed, such as price
amplitude (Porter and Smith 1995), total dispersion (Haruvy and Noussair 2006), aver-
age bias (Haruvy and Noussair 2006), Haessels R?2 (Dufwenberg et al. 2005), duration

! This model we proposed is based on Ising-type Model (Chiarella et al. 2009; He 2010; He and Zheng
2010).
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(Porter and Smith 1995), etc. However, all of these methods have a hypothesis that we
know the fundamental value. But in the real market, the fundamental value is difficult
to be estimated. Even for the same asset, different traders’ estimated value will be
different. To quantify the bubbles, we apply a method called Log-Periodic Power Law
(LPPL) model, which is proposed by Sornette et al. (1995). This model was derived
from the rational stochastic crashing bubble model by Blanchard (1979) and Blan-
chard and Watson (1983). In their definition, bubbles behave as a “super-exponential”
pattern, punctuated by bursts of negative feedback spirals of crash expectations (Jiang
et al. 2010).

Although this definition of bubbles remains controversial (Lux 2007; Rosser 2008),
this ‘bubble’ model are applied and some seemingly successful predictions are reported
in existing literature (Zhou and Sornette 2003, 2006; Sornette et al. 2009; Bastiaensen
et al. 2009).

Our article is organized as follows: Sect. 2 describes the methodology, includ-
ing Multi-Agent Model, LPPL Model, (H, ¢) Analysis and Lomb Spectral Analysis;
Sect. 3 shows the results of simulations; Sect. 4 studies the bubbles in different sce-
narios; Sect. 5 is the discussion and Sect. 6 gives the main conclusions.

2 Models
2.1 Multi-agent Model

Suppose that a simplified quote-driven market is composed of a N x N two-
dimensional grid network, where each grid (i, j) is occupied by a market participant.
The topology of this artificial market is a torus, namely, the upper and lower boundaries
are connected, so are the left and right ones. Each agent makes his own transaction
(eg. buy or sell) decisions based on both his private information and influence from his
close neighbors. To simplify the model, we define that each agent collects information
from his nearest 4 neighbors, namely his upper, lower, left and right grid sites.

For simplicity, we assume that for every time step of simulation, agent (i, j) can
be in only one of three possible states: s; ; € {—1,0, +1}, among which —1 stands
for agent selling one unit of risky assets, while +1 stands for agents buying one unit
of risky assets, and 0 means idle state, namely neither buying or selling.

In financial market, an investor’s behavior is usually based on different information
sets before he makes a decision. To simplify this model, we only considered the
information of price tendency 7', public information G, and noise ¢, so for each time
step, the information of agent (7, j) can be given by

1
Ui @) = _ [ci T, j (1) + Bi,jGij (1) + vi,j (Dei j (1] (D

aij+ Bij+Vij

where «, § and y represent the weights given to each information sets; for example,
if B = y = 0, the agent’s behavior is totally influenced by the price tendency and
he is more likely to be to a chartist, if « = y = 0, he prefers the public information
to technical analysis; while if « = 8 = 0, he is a pure noise trader. For each agent,
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the weights are randomly chosen according to the realizations of the set of Laplace
distributions (Chiarella et al. 2009), namely,

Pr(a) = 3 exp(—a/51)
Pr(B) = 5 exp(—B/82)
Pr(y) = 5, exp(—y/83)

where the distribution is determined by the parameter §. If the § is larger, the weight
will be a greater probability to get larger. In our simulation, the agents do not select any
parameters. In different scenarios, the constitution of heterogenous traders is controlled
by the parameter §.

From the perspective of price tendency, a chartist analyzes the historical prices
and then predict the future tendency before he makes a decision. To simplify our
discussion, we only considered a linear tendency. For each agent (i, j), we supposed
that he has a memory of price with length of . The influence is measured by the slope
of linear fitted curve. If the slope is steep, the positive (or negative) influence should
be large, whose absolute value should be close to 1, and while if the slope is flat, the
positive (or negative) influence should be small, whose absolute value should be close
to 0. Then the influence of price tendency 7T in Eq. (1) can be given by

I —exp(—n*Tr; (1))
I +exp(—=n*Tr; (1))

T, j(1) = )

where T'r is the slope which measured by the least square method, and the length of
memory t is randomly chosen according to an exponential distribution:

1
Pr(z — 70) = o exp[—(t — 70)/84]

Since 7 is an integer, the probability then changes to be
T =[641In(1 —w)]+ 19 3)

where w is randomly chosen and obeys uniform distribution U(0, 1), and 7 is the
minimum memory.

Except the chartists, there are also many other traders who make their decisions
based on the public information. Since the price is determined by supply and demand,
the authenticity of information is somehow less important under many circumstances;
what might be more important is how many people believe and act upon a given set
of information, which in this context, is a self-reinforcing process that will inevitably
affect prices. In this paper, for each time step, the public information B is randomly
chosen and independently distributed according to the standard normal distribution,
that is, B «~ N(0, 1) , where the symbol of B represents the positive or negative infor-
mation, while the absolute value represents the influence of the random event. Since
different investors have different understandings and interpretations of the same infor-
mation set (He et al. 2009), we thereby incorporate a deviation among understandings
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L, where L «~ N(0, 1) and then for each agent (i, j), the information can be defined
as

Fij(t) = B j(t) +q* L; j(1) )

where ¢ is a control variable, and if ¢ = 0, that means all of the agents can correctly
understand the information; meanwhile, if the symbol of B; ; is different with that
of F; j, that means agent (i, j)’s understanding is not correct. Then the influence of
public information G in Eq. (1) can be given by

Gi,j(1) = sign(F j(1))[1 — exp(=|Fi ;j ()])] (&)

According to Black (1986), there are noise traders, who might (incorrectly) regard
noise as effective information, and make their decisions accordingly. To capture this
feature, we designate the ¢ in Eq. (1) as a Uniform distribution noise, namely, & -
u(, 1).

Before each agent (7, j) makes his own decisions, he is usually influenced by people
around him; in this model, the nearest 4 neighbors include his upper, lower, left and
right grid sites. Because usually all that each agent knows is the past transaction
behaviors of the neighbors instead of their ongoing decisions, we define the final
information as

1—m
lij0) = —— > it = 1) +mUi j(0) (6)
(i)

where J(J « U(O0, 1)) represents the influences from a specific agent among the
nearest neighbors. If / = 0, it means this agent has no influence on his neighbors, and
nobody believe him; while if J = 1, it means every neighbors try to imitate his whose
behaviors are among the critical information to the neighbors’ decisions. Meanwhile,
the parameter m is the weight of imitation, e.g., if m = 1, this agent only believes
his own self, and completely disregard the neighbors’s behaviors; on the contrary, if
m = 0, he has no faith in himself, and follows others’ behaviors blindly. Then for
each agent (i, j), the strategy can be given by

L ) > v (0
sij 0 =10 V(0 < L j(0) < v (1) (7
—1 [,',j(l‘) <UZA/~(Z‘)

where v” and v" are positive and negative thresholds, respectively. If an agent have
collected enough information, namely /; ; exceeds the positive (or negative) thresh-
old, he will buy (or sell) one unit of risky assets, otherwise he will do nothing. The
thresholds are defined as

vf-(l) =1—exp (— dlp‘)
”Z;(l) = - [1 — exp (—jd{fj )] ®)
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where dl.p j and d! j are selected randomly and obey normal distribution with a unit
variance and zero mean. Later on, according to the judgment of market, vip f (t) and
v ; (1) are adjusted by the returns,

{ v (¢ + 1) = v (1) explicr x R(1)) )

v;fj(t +1) = v;fj(t) exp(ka * R(t))

In a market, the price can not increase or decrease unlimitedly. If the price continues
to rise, the investor or agent may consider the downside risk, and the positive threshold
would rise quickly; meanwhile if the price continues to decrease, some investors may
worry about whether the price reaches the bottom, and the negative threshold would
decrease slowly. So in Eq. (9), the parameter «; should be smaller than the «;.

To further simplify this problem to facilitate our discussion, let us suppose in this
artificial market there is an ideal market maker who does not make profits from bid-
ask price difference (He 2010), he only collects all the agents’ orders and then quotes
a single price at a time step to correct the imbalance between demand and supply
according to the return

RO [em(D(t)/S(r) -1 D> S0 (10,

—0()(S@)/D@) —1) D) = S(1)
where D(t) is the demand and S(¢) the supply of the risky assets. Since there is a
market maker, and each agent only can buy (or sell) one unit of financial assets to

him at one step of simulation, the trade volume (namely, demand plus supply) can be
simply given by

Vy=DO+SO = D sijO+] D i) (11)

si,j(0)>0 s, (1)<0
where the parameter 6, a measure of the activity of market, is adjusted at each time by
0(1) = n(V(1)/N?) (12)

where N? is the total number of agents, and the parameter A is an adjustment rate of
the market.

2.2 Log-Periodic Power Law Model

The Log-Periodic Power Law (LPPL) model (Sornette et al. 1995; Johansen et al.
2000; Jiang et al. 2010) that we use is:

I(t) = A+ Bx* 4+ Cx* cos(wInx + ¢) (13)
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where x = |t — t.|. The parameter 7. is a critical point of the time in which the
crash is most likely to occur; I (¢) can be the price P (¢) or its logarithm In P(t):* A
is the highest value which the P(¢) or In P(¢) would be most likely to reach at the
critical point; « is the exponent of power—law growth; w is an angular frequency of
log-periodicity and ¢ is a phase angle.

The LPPL model is a highly non-linear function and has seven parameters that
need to be estimated. Fortunately, the parameters A, B and C are in the linear part
of the function. For any given values of «, ., @ and ¢, the parameters A, B and C
can be regarded as an expression of them by the Least Squares method. Therefore
only four parameters need to be searched. In order to decrease the complexity of the
fitting procedure and improve its stability, Filimonov and Sornette (2011) presented a
simple transformation of Eq. (13) that reduces it to a function of four linear parameters
and three nonlinear parameters. According to Johansen et al. (2000), Taboo-Search is
applied to reach a global optimization.

2.3 (H, q) Analysis

As mentioned above, within the context of LPPL model, the price (or the logarithm
of price) follows a super-exponential growth with log-periodic oscillations before the
critical point; therefore, it is a logical necessity for us to detect whether there exist
log-periodic oscillations in the generated prices.

In order to detect the log-periodic oscillations (if there exits), we applied the (H, g)
analysis proposed by Zhou and Sornette (2002), which is based on the inverse of the
g-integral. The (H , g)-derivative is given by

A fx) — flgx)

H
Dy 1) = S A

(14)

where H and g vary in the ranges (—1, 1) and (0, 1). If we chose a appropriate exponent
H, it can remove the effect of power—law relationship.

2.4 Lomb Spectral Analysis

The (H, g) can obtain the part of log-periodicity in time series (if there exists). How-
ever, we can not judge whether there are log-periodic oscillations by naked eye. A
method to quantify the periodicity is also needed. Usually, the Fast Fourier Transfor-
mation (FFT) is considered to be an effective method, but it is applied for the uniform
distributed sample. For the log-periodicity (if any), the sample is non-uniform because
the time in horizontal axis is logarithmic. The data points are intensive which are far
away from critical point, while those adjacent to critical point are thin. Therefore, the
Lomb periodogram may be a proper solution and is suggested to detect the log-periodic
oscillations. The normalized Lomb periodogram is

2 In this article, we apply the logarithm of price, namely In P (7).
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1 [ZlN:1 y(t;) cos w(t; — ‘L'):|2 [ZINII y(t;) sinw(t; — t)]2

Py(w) = == +
282 | 3N coste(t — 1) SV sin2 ol — 1)
(15)
where 7 is determined by
1 N | sin2ot;
e = L rotan izt Sin20 a16)
2w >isg cos2wt;

If a high peak is detected in the Lomb periodogram, it means there is more likely
a periodicity; in other words, the higher Py (w) is, the more probability of periodicity
with this angular frequency.

3 Simulations
3.1 Setting of Scenarios

In this paper, we intend to investigate the relationship between the heterogeneity of
traders and the bubble dynamics. To make a clear contrast, we first of all design
three extreme (homogeneous) scenarios, in each of which the traders in the market
are mainly influenced by one of the three information sets (price tendency, public
information or noise information):

Scenario A (Price Tendency Scenario): In this scenario, the traders are influenced
only by the price tendency (the parameters §; = 5, 6o = §3 = 1). Before making
decisions (buy or sell a unit of asset), the investors predict the future trends of price
according to the tendency of price or the history information.

Scenario B (Public Information Scenario): In this scenario, the public information
plays a dominant role (the parameters 8, = 2.53, 8; = 83 = 1). For all of agents, they
can easily get free and common information, which has a large probability to have a
heavy weight.

Scenario C (Noise Information Scenario): In this scenario, the agents make deci-
sions based on the market noise (the parameters §3 = 5, §; = §, = 1).

As a comparison, we then propose an integrated scenario, in which the traders are
influenced by all of the three factors, and they are more likely to be heterogeneous,
namely,

Scenario D (Integrated Scenario): In this scenario, all of the factors have an equal
probability to affect each agent (the parameters §; = §» = §3 = 1). Some of them may
be mainly influenced by one of the factors and more likely to be chartist, information
trader or noise trader; some of them may prefer two factors than the others; meanwhile
the others may fully consider the various factors. In one word, this heterogeneous
market is occupied by different kinds of traders.

3 Here we intended to set 82 = 5, however, the price is much easily to drop to the value around O for a long
time.
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Fig. 1 Illustrates the market of Price Tendency Scenario (Scenario A). In this scenario, each agent prefers
information from a price tendency (The parameters §1 = 5, §o = 83 = 1). From the rop to the bottom there
are prices (a), returns (b) and trading volume (c), respectively

As for the other parameters of the multi-agent model, they should be same in all
of the scenarios. In our simulations, we set N = 100, namely, the market contains
100 x 100 investors; the minimum memory was set to be a week, namely, 7p = 5,
and the probability parameter §4 = 5; meanwhile, the effect of tendency n = 0.01;
misunderstanding of public information ¢ = 0.5; imitation behavior m = 0.5; the
extent of market activity A = 0.05; adjustment speed of threshold x; = 1 (positive)
and k2 = 0.9 (negative).

3.2 Results of Simulations

Figure 1 shows the result of Scenario A. In this market the price is led by the agents
who cares about the tendency. Figure 2 shows the result of Scenario B. Comparing with
Scenario A, one can find an interesting phenomenon. The price changes dramatically.
At some moments, it may increase rapidly and reach a high value; but at some other
moments, it may drop quickly. For a long time horizon, the price crashes and fluctuates
near the value of 0. Meanwhile the returns vary frequently and the volume reaches a
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Fig. 2 Illustrates the market of Public Information Scenario (Scenario B). In this scenario, each agent
prefers the public information (The parameters 6, = 2.5, 81 = 83 = 1). From the top to the bottom, there
are prices (a), returns (b) and volume (c¢), respectively

high value. Figure 3 shows the result of Scenario C. In this scenario the price fluctuates
in a small range. Figure 4 shows the simulated results of Scenario D, in which the
traders are heterogeneous. Comparing with the four scenarios, it is distinctive to find
the stylized fact of volatility clustering in the returns of Scenario A, B and D; however,
for Scenario C, this phenomenon is not that obvious.

4 Studying of Bubbles
4.1 Statistical Properties

To get a better understanding of the generated time series, we provided the sum-
mary statistics of the returns for different scenarios (see Table 1). Figure 5 shows the
distributions of returns (rescaled by their respective standard deviation) for different
scenarios. It is clear to find that, for the Price Tendency Scenario (Scenario A), Public
Information Scenario (Scenario B) and Integrated Scenario (Scenario D), the distribu-
tions show a high degree of peakedness and fat tails, which have been widely detected
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Fig.3 Illustrates the market of Noise Information Scenario (Scenario C). In this scenario, each agent treats
market noise as effective information (The parameters 63 = 5, 87 = 82 = 1). From the fop to the bottom,
there are prices (a), returns (b) and volume (c) respectively

in the real financial markets, however, for the Noise Information Scenario (Scenario
), the distribution is more close to the Gaussian distribution.

Figure 6 shows the autocorrelation of returns (a) and volatilities (absolute returns)
(b). The red dashed lines represent the noise levels. One can find in this figure that
for all of scenarios, there is no autocorrelation in the returns. For the volatilities, there
is strong long-term autocorrelation in Scenario A, B and D, while the autocorrelation
seems insignificant in Scenario C.

Meanwhile, in order to detect the long memory of the time series, we estimate the
Hurst exponents by means of the Detrended Fluctuation Analysis (DFA) (Kantelhardt
et al. 2002). Figure 7 shows the results calculated by the returns (a) and volatilities
(b) respectively. If the Hurst exponent is equal to 0.5, there is no autocorrelation and
the time series are close to the random walk; if it is greater than 0.5, the time series
are positive autocorrelated and show long memory; otherwise if smaller than 0.5, the
time series are negative autocorrelated and show anti-persistent properties (He 2010;
He and Qian 2012). From Figure 7 the results show that, for the returns, all of the
Hurst exponents are close to 0.5 (namely, 0.48 = 0.01 for Scenario A, 0.51 £0.01 for
Scenario B, 0.50 4= 0.01 for Scenario C and 0.47 £ 0.01 for Scenario D), meanwhile,
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Fig. 4 Tllustrates the market of Integrated (Heterogeneous) Scenario (Scenario D). In this scenario, each
agent puts equal weights on the three sets of information (The parameters §; = dp = 43 = 1). From the
top to the bottom, there are prices (a), returns (b) and volume (c¢), respectively

for the volatilities, the exponents are greater than 0.5 and show long memory (namely,
0.69 £ 0.02 for Scenario A, 0.82 4 0.02 for Scenario B, 0.63 £ 0.02 for Scenario C
and 0.84 £ 0.03 for Scenario D), which is consistent with the stylized fact found in
our previous empirical findings (Chen and He 2010; He and Chen 2011a,b,c).

From these results, one can find that, for Scenario A, B and D, our model can capture
many major stylized facts observed in real world markets, such as volatility clustering,
fat tails, no autocorrelation for returns and long memories for the volatilities, etc. It is
very interesting that for Scenario C, it only shows weak autocorrelation for volatilities
and the price is much close to the random walk for a market dominated by noise
traders.

4.2 Identifying the Bubbles

Before we apply LPPL model, it is necessary to define what the bubble implies.
Usually, when a bubble bursts, there is a crash, which is a very large and unusual price
fall. Before a crash, the price will reach a high value (a peak), but this does not mean
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Table 1 The summary statistics

. . Mean SD Skewness Kurtosis
of returns for different scenarios
Scenario A 0.00006726 0.0254 0.3539 7.8650
Scenario B 0.00008111 0.2067 0.1078 4.3994
Scenario C 0.00001415 0.0154 0.0839 2.7509
Scenario D 0.00003845 0.0681 0.1455 5.1044
1.6
1.4 A ——— Gaussian 1o
—<&— Scenario A
1.2 1 —O— Scenario B
—%— Scenario C 4
104 —=&— Scenario D
:"g
< 8 4
0
3
~ 6 1 b

Fig. 5 The distribution of returns (rescaled by their respective standard deviation) for different scenarios.
The red solid line presents the standard Gaussian distribution. The distributions of Scenario A, B and D
show a high degree of peakedness and fat tails. However, for Scenario C, the distribution is more close to
the Gaussian distribution

10 20
(a) & Scenario A (b) o S io A
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.08 1 o Scenario B o .
S i 15 ©  Scenario B
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B 1 i S < ,
4 Scena D &
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S °
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Fig. 6 The autocorrelation of returns (a) and volatilities (absolute returns) (b). The red dashed lines
represent the noise levels which are computed as +3/+/L (see (Bouchaud et al. 2000; Raberto et al. 2001),
where L is the length of time series (namely, L = N 2 = 10000)
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Fig. 7 The log-log plot for detrended fluctuation function F(s) as a function of time lag s for the returns
(a) and the volatility (b). The Hurst Exponent for the returns is close to 0.5, meanwhile, for the volatility,
it ranges around 0.6 to 0.8

that every peak is a beginning of crash. For example, price may drop now and then, but
may increase again rapidly when a bubble is still expanding. To avoid this situation,
we apply a procedure according to Hong and Stein (2003), which identify a peak as
one initiating a crash:

(1) A period of 500 days* prior to the peak for which there is no value higher than
the peak’s;

(2) A drop in price of 25 %, namely, down to 75 % value of the peak’s;

(3) This drop must occur in 100 days after the peak.

By this procedure, 7 crashes are identified in Scenario A (see Fig. 1), 10 crashes are
identified in Scenario B (see Fig. 2), 3 crashes are identified in Scenario C (see Fig.
3) and 16 crashes are identified in Scenario D (see Fig. 4).

In each of the these scenarios, we choose a typical bubble as a representative. We
regard the peak as the end of a bubble, although one may not know when exactly the
bubble began. In most cases, the globally lowest price is not the beginning of the bubble.
We thereby use a varying window suggested by Jiang et al. (2010). Accordingly, the
following representative bubbles are chosen for the scenarios:

(1) Scenario A (see Fig. 1): The start time is increasing from 1,371 to 1,411 in steps
of 10 (namely two weeks), while the end of the window is fixed at the time of
1,811 (the peak is at the time of 1,821);

(2) Scenario B (see Fig. 2): The start time is increasing from 2,121 to 2,161, while the
end of the window is fixed at the time of 2,444 (the peak is at the time of 2,464);

(3) Scenario C (see Fig. 3): The start time is increasing from 6,062 to 6,102, while the
end of the window is fixed at the time of 6,349 (the peak is at the time of 6,369);

(4) Scenario D (see Fig. 4): The start time is increasing from 3,052 to 3,092, while the
end of the window is fixed at the time of 3,459 (the peak is at the time of 3,479).

4 Here one day means a time step of our simulation.
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Fig. 8 The fitting of LPPL model for a representative bubble in Scenario A. The two black dash lines
correspond to the minimum and maximum time of the sample. The colored solid lines are the results of
fitting in sample while the colored dash lines are the prediction out of sample. The shadow box indicates
the range of values of the crash dates for the fits

4.3 Fitting of LPPL Model

The selected period of time series are fitted by the LPPL model (see Figs. 8, 9, 10,
and 11). Figure 8 shows the result for a representative bubble in Scenario A, from
which one can find that this bubble can be described by LPPL model well with a
significantly distinctive log-periodicity. The predicted crash point is between 1,815
and 1,840, while the real peak of the bubble fall into this range.

Figure 9 shows the result for a representative bubble in Scenario B. The price
follows a power—law increasing process; but the log-periodicity is not significant
comparing with the standard LPPL bubble. Within the sample the price can be
fitted well; meanwhile out of sample, the predictions seem still good in some
sense, and the real peak of the bubble is fall into the range of predicted crash
data.

Figure 10 shows the result for a representative bubble in Scenario C. From this
figure one can find that in sample the behavior of price can be fitted by the LPPL
model very well, however, for out of sample, the predicted range is far away from the
point which the real crash happened. Meanwhile, in this scenario, the log-periodicity
is also not obvious.

Figure 11 illustrates the result for a bubble in Scenario D, from which one can find
the power—law price increase decorated by log-periodic oscillations can be observed
obviously. The bubble can be fitted well by the LPPL model while the crash can be
also predicted well, and the real peak of the bubble fall into the range of predicted
crash data.
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Fig. 9 The fitting of LPPL model for a representative bubble in Scenario B. The two black dash lines
correspond to the minimum and maximum time of the sample. The colored solid lines are the results of
fitting in sample while the colored dash lines are the prediction out of sample. The shadow box indicates
the range of values of the crash dates for the fits

%27 7, min/max: 6062-6102 |
1 6349 | s
peak data: 6369 / SN
5.0 - dicted peak: 6426-6477 | e i AN
. pre 1cte pea : 7 N

4.6

4.4 T T T T 1
6000 6100 6200 6300 6400 6500

?

Fig. 10 The fitting of LPPL model for a representative bubble in Scenario C. The two black dash lines
correspond to the minimum and maximum time of the sample. The colored solid lines are the results of
fitting in sample while the colored dash lines are the prediction out of sample. The shadow box indicates
the range of values of the crash dates for the fits

4.4 Analysis of Log-Periodicity

In order to check the existence of log-periodicity, we applied (H, ¢) analysis and Lomb
spectral analysis. We set the 7, to be values which we obtained by the LPPL model,
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Fig. 11 The fitting of LPPL model for a representative bubble in Scenario D. The two black dash lines
correspond to the minimum and maximum time of the sample. The colored solid lines are the results of
fitting in sample while the colored dash lines are the prediction out of sample. The shadow box indicates
the range of values of the crash dates for the fits
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Fig. 12 Lomb periodograms for the time series obtained by (H, ¢) analysis with g = 0.8 and H = 0.9 for
Scenario A. The inset shows the corresponding plots of D;I In P(¢) as a function of In(¢, — t). The dash
lines mean the most probable angular frequency. In the left of dash lines are the spurious peak associated
with the most probable partial oscillations of a noisy signal. Two mainly angular frequency are found,
wiomb = 7.04 £ 0.59 (the fundamental angular frequency) and w%omb = 10.58 £ 1.61 (the second

harmonic)

and the results can be seen in Figs. 12, 13, 14, and 15. If there is a high Lomb peak,
it means that there is a large probability to be a periodicity with the corresponding

angular frequen

cy.
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Fig. 13 Lomb periodograms for the time series obtained by (H, ¢) analysis with g = 0.5 and H = 0.9 for
Scenario B. The inset shows the corresponding plots of D;’ In P(¢) as a function of In(t, —t). The dash lines
mean the most probable angular frequency. In the left of dash lines are the spurious peak associated with
the most probable partial oscillations of a noisy signal. Two mainly angular frequency are found, namely,
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Fig. 14 Lomb periodograms for the time series obtained by (H, ¢) analysis with g = 0.6 and H = 0.8 for
Scenario C. The inset shows the corresponding plots of D;’ In P(¢) as a function of In(t, — t). The dash
lines mean the most probable angular frequency. In the left of dash lines are the spurious peak associated
with the most probable partial oscillations of a noisy signal

From each figure, one can find that there is always a high peak in a low frequency,
which is dangerously close to the most probable angular frequency (Zhou and Sornette
2002). Huang et al. (2000) have found that noise decorating power laws may lead to
artifactual log-periodicity with a most probable frequency corresponding roughly to
1.5 oscillations over the whole range of analysis.
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Fig. 15 Lomb periodograms for the time series obtained by (H, ¢) analysis with g = 0.7 and H = 0.7 for
Scenario D. The inset shows the corresponding plots of Df In P(¢t) as a function of In(t. —t). The dash lines
mean the most probable angular frequency. In the left of dash lines are the spurious peak associated with the
most probable partial oscillations of a noisy signal. Two angular frequency are found, w]L omb = 0:53+£1.65

(the fundamental angular frequency) and w% omp = 13.82 & 1.19 (the second harmonic)
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This peak is a spurious one and should be excluded from Lomb Spectral, in other
words, if the peaks are near to the dash lines (see Figs. 12, 13, 14, and 15), it means
there is no log-periodicity. Figure 12 shows the result of the bubble in Scenario A. The
inset shows the (H, ¢)-derivatives of In P (¢) as a function of In(¢z, — t) with g = 0.8
and H = 0.9.° The dash lines mean the most probable angular frequency. In the left of
dash lines are the spurious peak associated with the most probable partial oscillations of
anoisy signal. Two main angular log-frequency are found, a)iomb = 7.04 £ 0.59 (the
fundamental angular frequency) and a)fomb = 10.58 £ 1.61 (the second harmonic).

Figure 13 shows the result of the bubble in Scenario B. The inset shows the (H, ¢)
analysis with ¢ = 0.5 and H = 0.9. The major angular log-frequency is found,
namely, wiomb = 4.86 £+ 0.99. However, from the figure one can also find that those
high peaks are very close to the dash lines and the log-periodicity is not obvious.

Figure 14 shows the result of the bubble in Scenario C. The inset shows the (H, q)
analysis with ¢ = 0.6 and H = 0.8. From the figure, one can find that the main
angular log-frequency is smaller than that of the most probable angular frequency,
which means that this periodicity (or log-periodicity) is more likely to be caused by
noise. Or in other words, in this scenario, there is not a main log-periodicity.

5 We have tried different pairs of H and g. Here we only showed the pairs which we thought to be
appropriate.
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Figure 15 shows the result of the bubble in Scenario D. The inset shows the (H, g)
analysis with ¢ = 0.7 and H = 0.7. Two angular frequency are found, wiomb =
6.53 £ 1.65 (the fundamental angular frequency) and a)iomb = 13.82 £ 1.19 (the
second harmonic).

5 Discussions

We established a multi-agent model under three homogeneous scenarios (Scenario A,
B and C), in which the traders’ behaviors are mainly influenced by one single infor-
mation set (Price Tendency, Public Information or Noise Information); meanwhile, as
a comparison, an Integrated Scenario (Scenario D) is also proposed, in which all of
the traders can be influenced by all of three information sets, and the traders are more
likely to be heterogeneous. Through simulations we found some interesting results in
each of the scenarios.

For Scenario A (see Fig. 1), the market is mainly lead by the chartists who infer
price tendency. The traders in this market prefer the technical analysis. They are likely
to collect the history information or apply their past experience to predict future trends
before making a decision. To look at the whole market, there is lack of a strong common
information. Even if the traders achieve synchronization or the bubble begins to form,
some other interference factor (a negative public information or noise information)
is easy to change the price tendency. The log-periodic power law pattern bubble or
LPPL bubble is detected, however, in this market one can also find that the behavior
of price seems smooth and the number of bubbles is only a few. Comparing with other
scenarios (Scenario B and D), in this market the bubble is not easy to form.

For Scenario B (see Fig. 2), the market is mainly influenced by the public informa-
tion. In this scenario, traders are easily to get the same information, which is a free
and common knowledge for every one. The influence of public information is large
enough and most of the traders are easily to obtain the same expectation or achieve
synchronization, and push the price to a high (or low) level. If positive information
follows by positive information (or negative information follows by negative infor-
mation), A huge bubble (or crash) is more easily to be happen (see c¢ of Fig. 11). In
this market, the LPPL bubble can also be detected, however, the log-periodicity is not
obvious and the formation of bubble is more likely to follow a power law increase
pattern.

For Scenario C (see Fig. 3), the market is mainly influenced by the noise information.
In this market, the traders are more likely to obtain the noise instead of effective
information. In this market, the price fluctuates in a small range and there are only some
small bubbles. There are only a few extreme events, and the behavior of price is close to
the random walk, meanwhile, this market is more likely to be a weak effective market.

As for Scenario D (see Fig. 4), the market is composed of all kind of traders
and it is more close to a heterogenous market. In this market, the LPPL bubble is also
detected. The LPPL model is based on the hypothesis of homogeneous rational agents,
which is usually criticized by some other scholars. However, from the results of our
simulations, we can find that this bubble is not only detected in homogenous market,
but also formed in the heterogeneous market. Moreover, Comparing with Scenario
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Table 2 The summary of

results in simulations Formation Stylized facts Log- Predicted
of bubbles observed periodicity  or not
or not in bubble
Scenario A Hard Yes Yes Yes
Scenario B Easy Yes No Yes
Scenario C Hard No No No
Scenario D Easy Yes Yes Yes

A, in which the bubble is not easy to form, and Scenario B, in which the formation
of bubble is more likely to follow a power law increase pattern, the LPPL bubble is
widely detected in the heterogeneous market.

Meanwhile, in order to get a better understanding, our results can be summarized
in the following table (see Table 2).

From Table 2, we can find that, comparing with other two homogenous markets,
the bubble in Scenario B is very easy to form. However, behind the large fluctuations
of price, no log-periodicity is detected in this scenario, which means that this bubble
only follows a power—law growth. For Scenario A, the LPPL bubble is detected.
However, in this market the bubble is not easy to form. Comparing with Scenario B,
the behavior of price seems smooth, which leads there are only a few bubbles detected.
For Scenario C, the stylized facts of real market are not detected. The behavior of price
in this scenario is very close to random walk. And for this reason, even if there are
any bubbles, the bursting of bubble can not be predicted. Meanwhile, comparing with
the three homogenous scenarios before, one can find that in a heterogenous market
(Scenario D), the LPPL bubble is detected and this bubble is easy to form, which is
as the same as the real market.

Combining all of the results which we studied, we can hypothesize the dynamic
of the bubble: For the beginning of a bubble, the public information has an important
influence. Because of good news, or positive information, public information traders
believe that the asset price is underestimated. In a heterogenous market, there are many
this type of traders. Their buying behavior will lead the initial increase of price. Then
according to the chartists, who use the history price to predict the future price, and
the imitation behaviors of traders, the bubble presents a power—law growth tendency.
Meanwhile, different chartists have different expectations. Though the total tendency
of price is rising, however, it is punctuated by many small and large oscillations.
Because of different expectations of traders and their self-feedback, there exists a log-
periodicity. Further more, because of the existence of the power—law growth and log-
periodicity, the bursting of bubble has a degree of predictability, which is impossible
in the random walk price. And at last, by combining the effects of all traders, or the
effects of heterogeneity, the bubble represents a complex behavior in the real market.

6 Conclusions
In this article, we investigate the relationship between heterogeneity of market partici-

pants and financial bubbles. We considered three homogeneous and one heterogenous
scenario, and found interesting results:
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(1) We studied the impacts of different investors’ behaviors on the bubble formation
in the market
(a) In the market which traders are mainly influenced by the noise information,
the behavior of price is close to the random walk and this market is more likely
to be a weak effective market;
(b) In the market which traders are mainly influenced by the price tendency, the
behavior of price seems smooth and the bubble is not easy to form;
(c) In the market which traders are mainly influenced by the public information,
The price changes dramatically, a huge bubble (or crash) is easily to be happen;
(2) we studied the dynamic of the bubble and found that

(a) the public information has an important influence on the beginning of a bubble;

(b) traders’ different expectations and their self-feedback is one of reasons for the
existence of log-periodicity in bubble;

(c) theexistence of power—law growth and log-periodicity, which leads the probability
of prediction for the bursting of bubble, is caused by the combined effects of public
information, traders’ different expectations and their self-feedback.

In summary, we found that the heterogeneity of agents caused the complex pattern
of bubbles in the real market.
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