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Abstract

We study medical progress within an economy of overlapping generations subject to endoge-

nous mortality. Individuals demand health care with a view to lowering mortality over their

life-cycle. We characterise the individual optimum and the general equilibrium of the economy

and study the impact of improvements in the effectiveness of health care. We find that general
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vation. Moreover, an increase in savings offsets the negative impact on GDP per capita of a
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1 Introduction

The impact of demographic and medical change on the sustainability of health care systems and

the resulting need for reform have been the subject of empirical analyses for considerable time.1

By now, a consensus has emerged that medical progress is driving both the increase in health care

spending per capita or per unit GDP and the increase in longevity (e.g. Cutler 2004, Chandra

and Skinner 2012, Chernew and Newhouse 2012).2 Recent analysis by Fonseca et al. (2013) shows

that about 30 percent of health care spending growth in the US over the period 1965-2005 can

be explained by medical progress, with improved health insurance coverage explaining 6 percent

and income growth explaining 4 percent.3,4 At the same time, medical progress explains most of

the increase in life expectancy over the period of observation, which in welfare terms more than

offsets the greater spending. These findings echo, at aggregate level, earlier results by Cutler and

Huckman (2003) and Cutler (2007) who find that the technological improvements in the treatment

of heart disease over the 1980s and 1990s were generating benefits from increased survival, the value

of which was more than compensating the boost to health care costs.5

Although explaining the macro-economic implications of medical progress, the current line of

inquiry remains to a large extent silent about the general equilibrium effects of this very medical

progress. Indeed, there is strong evidence that medical innovations tend to boost the utilisation

of health care (e.g. Baker et al. 2003; Cutler and Huckman 2003; Wong et al. 2012; Roham et al.

2014). Given that the main concern about the expanding health share in the economy lies with its

absorption of resources that may be employed more productively in other sectors of the economy

(Pauly and Saxena 2012, Kuhn and Prettner 2016) it is then surprising that the role of medical

progress in this has not yet received more attention. An examination of this concern warrants a

general equilibrium analysis that keeps track of the way in which the increase in the demand for

1See e.g. Breyer and Felder (2006) and Breyer et al. (2015) for Germany; Dormont et al. (2006) for France; Meara
et al. (2004) and Shang and Goldman (2007) for the US; Karlsson and Klohn (2014) for Sweden; Zweifel et al. (2005)
for a set of OECD countries; and European Union (2015) for the then EU27. For an overview see Breyer et al. (2010).

2Other important drivers include income (Hall and Jones 2007) and the presence of social security (Zhao 2014).
3The analysis also reveals an important complementarity between medical progress and income, which explains

57 percent of the increase in spending.
4According to an earlier finding by Suen (2009) the compound of medical progress and income growth explains

all of the expenditure increase 1950-2001.
5Skinner et al. (2006) and Chandra and Skinner (2012) take a more nuanced view, showing that whether or not

welfare gains arise from the adoption of new medical technologies depends both on the nature of technology as well
as on the organisation of the health care system into which it is adopted.
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health care that is induced by medical change leads to changes in the sectoral structure of the

economy and of the way in which the induced price changes feed back again into the pattern of

individual demand.

In this paper, we examine the impact of medical progress on individual life-cycle outcomes as

well as on economic performance by analysing an OLG model, involving an endogenous demand

for and supply of health care. The demand for health and health care is derived from utility

maximisation within a life-cycle model with a realistic mortality pattern. Health care is provided

within a medical sector, employing capital and labour, competing for resources with a final goods

production sector. We characterise the optimal life-cycle allocation in terms of consumption and

health care and show how it evolves with age, depending on the various prices and on the state of

medical technology. As one important determinant of the demand for health care, we characterise

the value individuals attach to their survival, which will prove to be an important link between

macro-economic changes and their impact on the micro-decisions. Solving the profit maximisation

problem of perfectly competitive providers within the final goods and health care sectors, we can

characterise the optimal structure of supply and factor demand as well as the aggregate dynamics.

We then employ our model to analyse numerically the impact of medical progress on the pro-

vision of health care. Based on a steady-state benchmark scenario that is calibrated to represent

the US economy in the year 2003, we illustrate the importance of the micro-macro feedback by

studying the impact of a medical innovation which is either (i) unanticipated or (ii) anticipated.

In contrast to Hall and Jones (2007), Suen (2009), Fonseca et al. (2013), Zhao (2014) and

Koijen et al. (2016), we do not focus so much on characterising the contribution of different

factors to health care expenditure growth. We rather seek to identify and characterise in detail the

mechanisms that goven the impact of medical innovations on the economy. In so doing, we adopt a

quasi-experimental approach by which we study the impact of a ”stylised” medical innovation on a

steady state economy, tracing out the adjustment processes at micro- and macro-level that lead the

economy into a new steady state. This distinguishes our model from the steady state comparisons

in Suen (2009), Fonseca et al. (2013) and Zhao (2014) and balanced growth representations in Hall

and Jones (2007) and Koijen et al. (2016). Here, the abstraction from interfering macroeconomic

time trends allows a much clearer analytical and numerical identification of the impact of medical

innovation.
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Considering a medical innovation that improves the effectiveness of health care and raises life

expectancy by a little more than 1 year, which is broadly consistent with the increase in life

expectancy brought about by the US cardiac revolution during the 80s and 90s (Cutler 2007), our

key findings include the following. Health expenditure per capita increases by some 12.2%, about

0.9 percentage point of which owing to an increase in the price for medical care, about 1.8 percentage

points owing to the ageing of the population that is induced by the medical innovation, and the

remaining 9.5 percentage points owing to an increase in individual demand. Although this is a

substantive impact, we find that more than half of the increase in individual demand that would be

obtained under a constant set of prices is absorbed by the general equilibrium increase in the price

for health care. This suggests that estimations or projections of the impact of medical innovation on

health care spending need to keep close track of possible general equilibrium repercussions in order

to avoid strong biases. With the health expenditure share in GDP increasing by some 1.6 percentage

points, it may come as a surprise perhaps, that the level of GDP per capita itself remains unaffected.

This is because the drop in the employment rate that comes with a disproportionate increase in

survival amongst the retired population is neutralised by the accumulation of additional wealth as

is induced by the increase in longevity and the prospect for individuals to purchase more effective

health care in their old age.6 Indeed, if a medical innovation is fully anticipated, individuals increase

their savings prior to the innovation, triggering a temporary economic boom.7 Finally, mortality

reducing medical innovations tend to come with a reduction in the value of survival over large parts

of the life-course. On the one hand, this reflects a reduction in consumption levels; on the other

hand, it implies that the price of medical care per life-year gained has fallen, a result that is in line

with empirical evidence (Cutler et al. 1998).

Our work ties in with two lines of literatures. First, a long-standing literature on the individual

demand for health and health care over the life-course (e.g. Grossman 1972; Ehrlich and Chuma

1990; Ehrlich 2000; Hall and Jones 2007; Kuhn et al. 2011, 2015; Fonseca et al. 2013; Dalgaard

and Strulik 2014). While these works are providing important insights into the determinants of the

demand for health and health care at the individual level, they take a partial equilibrium stance

6This is consistent with empirical evidence provided by De Nardi et al. (2010).
7While a number of recent studies have empirically examined the anticipation effects related to Medicare Part

D reform at microeconomic level (Hu et al. 2014; Alpert 2016, Kaplan and Zhang 2017), we are unaware of a
theoretical analysis of the macroeconomic impacts of anticipated medical innovation. See Mertens and Ravn (2011)
for a theoretical treatment of anticipation effects in the context of tax reform.
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by assuming an exogenous set of prices. As we will see, however, a neglect of general equilibrium

effects may lead to a rather exaggerated assessment of the boost to the demand for health care

following an innovation.

Second, our work adds to an emerging literature that considers the role of health care within

a general equilibrium context. Similar to our approach, Suen (2009) considers the impact of life-

saving health care, the productivity of which is raised by medical change. However, his model differs

in important respects: In contrast to our framework, Suen (2009) considers a single sector economy

with health care spending being deducted from consumption. Partly for this reason, he does not

model an endogenous price for health care but rather imposes an exogenous price trajectory. As

our analysis shows, however, sectoral reallocation plays an important role in explaining the impact

of medical progress on the economy and GDP, while the endogenous increase in the price of medical

care plays a key role in dampening the increase in the demand for health care following medical

innovation. Zhao (2014) analyses the impact of social security on health care spending, when

the latter enhances survival and finds by way of a numerical calibration for the US economy a

substantial positive impact. He does not, however, touch on the role of medical progress. Jung and

Tran (2016) model the general impact of the US 2010 health care reform but do not consider the

role of medical progress. Koijen et al. (2016) study the interaction between financial and real health

care markets and find that the premium associated with regulatory risk for e.g. pharmaceutical

companies lowers research and development (R&D) investments by more than a half and thereby

contains growth of health care expenditure by more than 3 percent. Kuhn and Prettner (2016)

examine the impact of exogenous variations to the size of the health care sector within an R&D-

driven growth economy, where health care enhances the survival and labour market participation

of overlapping generations of individuals. They conclude that while Euro area health care systems

impose a drag on economic growth, they are typically nevertheless favourable on welfare grounds.

Schneider and Winkler (2016) study an endogenous growth economy in which overlapping cohorts

of individuals invest in health care in order to lower mortality. Comparing the balanced growth

paths associated with different states of medical technology, they find that the technology leading

to a higher life expectancy imposes a drag on economic growth but leads to a welfare gain. Finally,

Kelly (2017) studies the response of a neoclassical economy with a medical sector to changes in
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total factor productivity and in the productivity of health care.8 The present work differs by the

more realistic modelling of the individual life-cycle from Koijen et al. (2016) and Kelly (2017)

who consider an infinitely lived representative individual; from Jung and Tran (2016) who consider

overlapping generations subject to exogenous mortality; as well as from Kuhn and Prettner (2016)

and Schneider and Winkler (2016) who consider Blanchard-Yaari type models with endogenous but

age-inspecific mortality and perfect annuitisation. The realistic demographic modelling is important

in as far as the economic impact of medical progress hinges on its impact on the age distribution

of the population.9,10 Finally, Jones (2016) studies the interaction of conventional and life-saving

R&D but does so within a social planner context.

The remainder of the paper is structured as follows: The following section is devoted to a

presentation of the model; Sections 3 and 4 solve for and characterise the individual life-cycle

allocation and the general equilibrium of the economy, respectively; Section 5 provides an analytical

assessment of the impact of medical progress; Section 6 presents the numerical analysis before

Section 7 wraps up. Some of the proofs have been relegated to an Appendix.

2 The Model

We consider an OLG model in which individuals choose consumption and health care over their

life-course. Individuals are assumed to be representative within each cohort and are indexed by

their age a at time t, with t0 = t − a denoting the birth year of an individual aged a at time

t. At each age, the representative individual is subject to a mortality risk, where S(a, t) =

exp
[− ∫ a

0 μ(â, h(â, t̂),M(t̂))dâ
]
is the survival function at (a, t), with μ(a, h(a, t),M(t)) denoting

the force of mortality. Following Kuhn et al. (2010, 2011, 2015) we assume that mortality can

be lowered by the consumption of a quantity h(a, t) of health care. In addition, we assume that

mortality depends on the state of the medical technology M(t) at time t. More specifically, we

8In contrast to the other approaches, the health care sector modelled in Kelly (2017) is not employing domestic
production factors. Changes to the provision of health care are therefore unrelated to factor prices and final goods
production.

9In particular, those models that assume infinitely-lived agents or an exogenous profile of mortality are abstracting
altogether from a saving resonse to health-induced changes in longevity. As e.g. Bloom et al. (2003) and De Nardi
et al. (2010) show, however, such a response is empirically relevant.

10OLG models with rich demography have been developed in other contexts (see e.g. Boucekkine et al. 2002;
D’Albis 2007; Heijdra and Romp 2009a,b; Heijdra and Mierau 2012). These models do not involve endogenous health
and survival.
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assume that the mortality rate μ(a, h(a, t),M(t)) satisfies

μ(a, h(a, t),M(t)) ∈ (0, μ̃(a, t)] ∀ (a, t) ;

μh(·) < 0, μhh(·) > 0;

μh(a, 0,M(t)) = −∞, μh(a,∞,M(t)) = 0 ∀ (a, t) ;

where μ̃(a, t) = μ(a, 0,M(t)) is the “natural ”mortality rate for an individual aged a at time t when

no health care is consumed. By purchasing health care, the representative individual can lower the

instantaneous mortality rate, and can thereby improve survival prospects, but can only do so with

diminishing returns.11

In regard to medical technology, we assume the following properties

μM (·) < 0, μMM (·) ≥ 0, μhM (·) � 0 ∀ (a, t) .

Hence, medical technology contributes toward reductions in mortality (μM (·) < 0) with (weakly)

decreasing returns. We leave it open, however, whether for any given positive level of health care,

h(a, t) > 0, medical technology is complementing the consumption of health care (μhM (a, h(a, t),M(t)) ≤
0) or substituting it (μhM (a, h(a, t),M(t)) > 0).

Individuals enjoy period utility u(c(a, t)) from consumption c(a, t). Period utility is increasing

and concave: uc(·) > 0, ucc(·) ≤ 0. In addition, we assume the Inada condition uc(c0) = +∞ with

c0 ≥ 0 denoting a level of subsistence consumption. Individuals maximise the present value of their

expected life-cycle utility

max
c(a,t),h(a,t)

∫ ω

0
e−ρau(c(a, t))S(a, t)da (1)

by choosing a stream of consumption and health care on the interval [0, ω] , with ω denoting the

maximal possible age, with ρ ≥ 0 denoting the rate of time preference, and with S(a, t), defined

above, denoting the survival function.12

11Zweifel et al. (2005) provide empirical evidence of decreasing returns to health expenditure in the reduction of
mortality. The decreasing returns assumption is also reflected in other empirical work on the relationship between
health care and mortality (e.g., Cremieux et al. 1999, Lichtenberg 2004, Hall and Jones 2007, Baltagi et al. 2012).

12Note that from the individual’s perspective age and time progress simultaneously, following the identity a ≡
t− t0 ∈ [0, ω] for t ∈ [t0, t0 + ω]. Thus, we have

∫ ω

0
e−ρau(c(a, t))S(a, t)da =

∫ ω

0
e−ρau(c(a, t0 + a))S(a, t0 + a)da =∫ t0+ω

t0
e−ρtu(c(t− t0, t))S(t− t0, t)dt.
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The individual faces as constraints the dynamics of survival and the dynamics of individual

assets k(a, t), as described by the system13

·
S(a, t) = −μ(a, h(a, t),M(t))S(a, t), (2)

k̇(a, t) = r (t) k(a, t) + l(a)w(t)− c(a, t)

−φ (a, t) pH(t)h(a, t)− τ (a, t) + π (a, t) + s(t), (3)

with the boundary conditions

S(0, t0) = 1, S(ω, t0 + ω) = 0 (4)

k(0, t0) = k(ω, t0 + ω) = 0. (5)

Here, (2) describes the reduction of survival according to the force of mortality. While for the

sake of simplification we are subsequently referring to S (a, t) as survival, the function may, in

fact, be interpreted as a more general measure of health that is subject to depreciation over the

life-course (Chandra and Skinner 2012, Kuhn et al. 2015). Indeed, (2) not only describes the

mortality process, but also proxies for the gradual decline in health over the life-course, as is

documented by the gradual accumulation of health deficits (e.g., Rockwood and Mitnitski 2007,

Dalgaard and Strulik 2014). With our focus being on an individual representing a whole cohort,

it is plausible to assume that the consumption of health care slows down the decline in health but

cannot reverse it.14 Furthermore, assuming that utility from consumption and utility from good

health are multiplicatively separable, one can easily generalise the interpretation of (1) to include

not only health-dependent duration of life but also health-dependent quality of life.

According to (3) an individual’s stock of assets k(a, t) (i) increases with the return on the

current stock, where r (t) denotes the interest rate at time t; (ii) increases with earnings l(a)w(t),

13In the following, we will use the
·
() notation to indicate both the derivative

·
x (a, t) := xa+xt for life-cycle variables

and the derivative
·
X (t) := Xt for aggregate variables. Drawing again on the identity t ≡ t0 + a from the individual’s

perspective, it follows that
·
x (a, t) collapses into a single dimension.

14This, in fact, is the only distinguishing feature from the modelling of the health process à la Grossman (1972),
where prevention and/or treatment of specific conditions may raise the stock of health of a specific individual. We
should like to stress, however, that for the purpose of analysing the impact of medical change on the aggregate
demand for health care it is entirely sufficient to focus on a (cohort-)representative individual as long as the age-
specific demand for health care, the resulting survival and, thus, the age-distribution of the population are reflecting
the data.
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where w(t) denotes the wage rate at time t, and where l(a) denotes an individual’s effective age-

dependent labour supply; (iii) decreases with consumption, the price of consumption goods being

normalised to one; (iv) decreases with private health expenditure, φ (a, t) pH(t)h(a, t), where pH(t)

denotes the price for health care, and where φ (a, t) denotes an (a, t)-specific rate of coinsurance;

(v) decreases with an (a, t)-specific tax, τ (a, t) ; (vi) increases with (a, t)-specific benefits π (a, t) ;

and (vii) increases with a transfer s(t) by which the government redistributes accidental bequests

in a lump-sum fashion. Here, we follow Suen (2009), Ludwig et al. (2012) and Zhao (2014) by

considering a setting without an annuity market.15,16 We assume that the survival function is

bounded between 1 at birth and 0 at the maximum feasible age ω [see (4)], and that individuals

enter and leave the life-cycle without assets [see (5)].

Denoting by B(t− a) the size of the birth cohort at t0 = t− a, the cohort aged a at time t has

the size

N(a, t) = S(a, t)B(t− a).

By aggregating over the age-groups who are alive at time t we obtain the following expressions

for the population size,17 aggregate capital stock, aggregate effective labour supply, aggregate con-

sumption, aggregate demand for health care, aggregate fiscal income from taxation, and aggregate

15This is well in line with evidence that few individuals annuitise their wealth (e.g. Warwshawsky 1988, Reichling
and Smetters 2015). Hansen and Imrohoroglu (2008) show that the empirically relevant hump-shaped life-cycle
profiles of consumption can be consistently explained within a life-cycle model only when assuming that annuity
markets are assumed to be absent (or severely imperfect).

16We have also considered a specification with imperfect annuities yielding a return r (t)+θμ (a, t) , where θ ∈ [0, 1]
and where μ (a, t) = μ(a, h∗(a, t),M(t)) is the expected mortality, given the equilibrium level of health care h∗(a, t).
Following Heijdra and Mierau (2012) in considering a scenario with θ = 0.7, we obtain qualitatively similar results
to those reported in this paper.

17In a slight abuse of notation, N(t) denotes the population size at time t, whereas N(a, t) represents the size of
the cohort aged a at time t.
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transfer payments, each at time t:

N(t) =

∫ ω

0
N(a, t)da,

K(t) =

∫ ω

0
k(a, t)N(a, t)da,

L(t) =

∫ ω

0
l (a)N(a, t)da,

C(t) =

∫ ω

0
c(a, t)N(a, t)da, (6)

H(t) =

∫ ω

0
h(a, t)N(a, t)da, (7)

Υ (t) =

∫ ω

0
τ (a, t)N(a, t)da,

Π(t) =

∫ ω

0
π (a, t)N(a, t)da.

The economy consists of a manufacturing sector and a health care sector. In the manufacturing

sector a final good is produced by employment of capital KY (t) and labour LY (t) according to

a neoclassical production function Y (KY (t), A (t)LY (t)), with A (t) measuring the state of labour

augmenting technology. A manufacturer’s profit can then be written as

VY (t) = Y (KY (t), A (t)LY (t))− w(t)LY (t)− [δ + r (t)]KY (t), (8)

where δ denotes the depreciation rate of capital.

Health care goods and services are produced by employment of labour LH(t), and capital KH(t)

according to the neoclassical production function F (KH(t), LH(t)). Recalling the price for health

care pH (t) , the profit of a health care provider is then given by

VH(t) = pH (t)F (KH(t), LH(t))− w(t)LH(t)

− [δ + r (t)]KH(t), (9)

where we assume that capital depreciates at the same rate across both sectors. Note that the

presence of perfect competition together with a neoclassical production function in the two sectors

implies VY (t) = VH(t) = 0 in equilibrium.

The government and/or a third-party payer (e.g. a health insurer) raise taxes (or contribution
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rates, e.g. insurance premiums) for the purpose of co-financing health care at the rate 1 − φ (a, t)

and of paying out transfer payments π (a, t). More specifically, π (a, t) may refer to pension benefits,

implying that

π (a, t) =

⎧⎪⎨⎪⎩ 0 ⇔ a < aR

π ≥ 0 ⇔ a ≥ aR

with π a uniform pension benefit and aR the retirement age. In such a setting we would also have

l (a) =

⎧⎪⎨⎪⎩ l̂ (a) ≥ 0 ⇔ a < aR

0 ⇔ a ≥ aR

.

Likewise, τ (a, t) are age-specific taxes. We could distinguish these into taxes used to finance health

care payments (or health insurance premiums), τH (a, t) , and social security contributions, τΠ (a, t) ,

where τ (a, t) = τH (a, t) + τΠ (a, t) . Furthermore, we could, in principle distinguish between lump-

sum and labour income taxes, τj (a, t) = τ̂j (a, t) l (a)w(t), with j = H,Π. As long as we assume a

unified government budget and an exogenous labour supply, it is sufficient to consider τ (a, t) .

Assuming that the government budget must be balanced within each period t we obtain the

constraint

∫ ω

0

⎧⎪⎨⎪⎩ [1− φ (a, t)] pH (t)h(a, t)

+π (a, t)− τ (a, t)

⎫⎪⎬⎪⎭S(a, t)B(t− a)da = 0. (10)

Finally, we assume that

s(t) =
ΥB(t)

N(t)
, (11)

where

ΥB(t) =

∫ ω

0
μ(a, t)k(a, t)N(a, t)da (12)

are total accidental bequests.18

18In order to ease on notation, we will subsequently refer to the shortcut μ(a, t) for μ(a, h(a, t),M(t)).
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3 Individual Life-Cycle Optimum

In Appendix A1 we show that the solution to the individual life-cycle problem is described by the

following two sets of conditions

uc (c (a, t))

exp
{
− ∫ â

a

[
ρ+ μ

(̂̂a, t+ ̂̂a− a
)]

d̂̂a}uc (c (â, t+ â− a))

= exp

[∫ â

a
r
(
t+ ̂̂a− a

)
d̂̂a] , (13)

−μh (a, t)ψ (a, t) = φ (a, t) pH (t) ∀ (a, t) , (14)

describing the optimal pattern of consumption c (a, t) and the demand for health care h (a, t), re-

spectively, of an individual aged a at time t. Condition (13) is the well-known Euler equation,

requiring that the marginal rate of intertemporal substitution between consumption at any two

ages/years (a, t) and (â, t+ â− a) equals the compound interest. Note that in the absence of annu-

ity markets, the uninsured mortality risk can be interpreted as an additional factor of discounting,

implying an effective discount rate ρ+ μ (a, t) at any (a, t).

Condition (14) requires that at each (a, t) the marginal value of health care,

−μh (a, t)ψ (a, t) , equals its effective price, φ (a, t) pH (t) . The marginal value of health care is given

by the marginal effect of health care on mortality, −μh (a, t), weighted with the private value of life

(VOL). The private VOL is defined by

ψ (a, t) :=

∫ ω

a
v (â, t+ â− a)R (â, a) dâ, (15)

with

v (a, t) :=
u(c (a, t))

uc (·) , (16)

and

R (â, a) := exp

[
−

∫ â

a
r
(
t+ ̂̂a− a

)
d̂̂a] , (17)

and amounts to the discounted stream of consumer surplus, v = u (·) /uc (·) taken over the expected

remaining life-course [a, ω] .19

19The VOL as we calculate it here differs from the typical representation of the value of a statistical life as e.g. in
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For a given set of prices, the evolution of consumption with age is described by (for a derivation

see Appendix A1)

·
c =

uc
ucc

(ρ− r + μ) . (18)

Noting that ucc < 0, it is readily seen that consumption tends to increase over the life-cycle if and

only if r − ρ > μ. In the absence of an annuity market, the uninsured mortality risk imposes a

downward drag on consumption over the life-cycle and implies that consumption will eventually

decrease with age when mortality μ grows sufficiently high.

For a given set of prices and a given state of the medical technology, the demand for health care

evolves with age as described by (for a derivation see Appendix A1)

·
h =

−1

μhh

⎡⎣μha + μh

⎛⎝ ·
ψ

ψ
−

·
φ

φ

⎞⎠⎤⎦ . (19)

Noting that μhh > 0, the impact of age on the consumption of health care involves three forces:

(i) the changing effectiveness of health care with age μha, a stronger (weaker) effectiveness with

age, μha < 0 (> 0) implying an increase (decrease) in health care; (ii) the rate at which the VOL

changes with age, a decrease implying a reduction in health care; and (iii) changes with age in the

co-insurance rate, φ, as e.g. during a transition from private to public health insurance at the onset

of retirement.

Differentiating (15) with respect to age, we obtain the dynamics of the private VOL as

·
ψ (a, t) = r (t)ψ (a, t)− u (c (a, t))

uc (c (a, t))
. (20)

Thus, the private VOL increases with the interest rate and declines over time as the consumer

surplus from a life-year lived is written off.

Shepard and Zeckhauser (1984), Rosen (1988), Johansson (2002), or Murphy and Topel (2006) in as far as (i) the
discount factor does not include the mortality rate; and (ii) the VOL does not include the current change to the
individual’s wealth, lw − c− h− τ + π + s. Both of these features are due to the absence of an annuity market.
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4 General Equilibrium

Perfectly competitive firms in the production sector choose labour LY (t) and capital KY (t) so as

to maximise period profit (8). The first-order conditions imply

r (t) = YKY
(t)− δ (21)

w (t) = YLY
(t) , (22)

i.e. the factor prices are equalised with their respective marginal products.

Likewise, perfectly competitive providers of health care choose labour LH(t) and capital KH (t)

so as to maximise period profit (9). From the first-order condition we obtain

r (t) = pH (t)FKH
(t)− δ (23)

w (t) = pH (t)FLH
(t) . (24)

Combining these conditions with (21) and (22) we obtain

pH (t) =
YLY

(t)

FLH
(t)

=
YKY

(t)

FKH
(t)

, (25)

implying that capital and labour inputs are distributed across the production and health care

sector in a way that equalises the marginal rate of transformation (i.e. the relative output gain in

production as compared to the output loss in health care from re-allocating one factor unit from

health care into production) with the price for health care. The higher the latter, the greater the

marginal rate of transformation, implying that more workers will be allocated to the health care

sector. With appropriate Inada conditions, YLY
(KY , 0) = YK = (0, ALY ) = ∞ and FLH

(K, 0) =

FK(0, LH) = ∞ we always have an interior allocation with LH(t) = L(t) − LY (t) ∈ (0, L (t)) and

KH (t) = K (t)−KY (t) ∈ (0,K (t)) .

4.1 Market Clearance and General Equilibrium

Our setting involves four markets: two input markets for capital and labour, respectively; and two

output markets for health care and for final goods, respectively. From the four market clearing
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conditions

KY (t) +KH(t) = K(t),

LY (t) + LH(t) = L(t)

F (t) = H(t),

Y (t) = C (t) +
·
K (t) + δK(t),

we obtain a set of equilibrium prices {r∗ (t) , w∗ (t) , p∗H (t)} as well as the level of net capital ac-

cumulation
·
K (t) . We provide a more detailed description of the general equilibrium structure in

Appendix A2.

5 Impact of Medical Progress

Demand for health care and value of life (VOL): In Appendix A4 we show that the impact

of medical progress, as measured by an increase in the level of medical technology, dM > 0, on the

demand for health care at (a, t) is described by

dh (a, t)

dM
=

−μhM

μhh︸ ︷︷ ︸
(i)

+
μh (a, t)

μhh︸ ︷︷ ︸
<0

(
1

pH (t)

dpH (t)

dM︸ ︷︷ ︸
(ii)

− 1

ψ (a, t)

dψ (a, t)

dM︸ ︷︷ ︸
(iii)

)
. (26)

Term (i) represents the effect of medical technology on the demand for health care through changes

in the effectiveness of care. If technology raises the marginal effectiveness of health care (μhM < 0),

term (i) is positive and more health care will be consumed at (a, t) in response to medical progress.

Term (ii) implies that the demand for health care tends to fall if medical progress raises the price

for health care. Finally, the demand for health care changes in line with the impact of medical

progress on the VOL [term (iii)].

The impact of medical progress on the VOL can be written as

dψ (a, t)

dM
=

∫ ω

a
R(â, a)

(
− v (â, t+ â− a)

∫ â

a

dr(t+ ˆ̂a− a)

dM
dˆ̂a︸ ︷︷ ︸

(iii.i)

dv (â, t+ â− a)

dM︸ ︷︷ ︸
(iii.ii)

)
dâ (27)
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where v (â, t+ â− a) and R(â, a) are given by ((16)) and ((17)), respectively, and where

dv (â, t+ â− a)

dM
=

(
1− uucc

u2c

)
dc (â, t+ â− a)

dM
. (28)

Thus, technology bears on the VOL through two channels: through changes in the interest rate

at which the monetary value of each remaining life year is discounted [term (iii.i)], and through

changes in age-specific consumption over the remaining life-course [term (iii.ii) and (28)]. According

to (iii.i), the VOL increases whenever improvements in medical technology reduce the interest rate,

an effect that arises only in general equilibrium. Noting that 1− uucc
u2
c

> 0 (see Appendix A4), term

(iii.ii) implies that a positive effect of medical technology on future consumption translates into an

increase in the demand for health care.

Generally, we can write c (â, t+ â− a) = c (a, t) exp
[∫ â

a gc(ˆ̂a, t+ ˆ̂a− a)dˆ̂a
]
, where c (a, t) is the

initial consumption level at birth, and where

gc(ˆ̂a, t+ ˆ̂a− a) :=
uc

uccc(ˆ̂a, t+ ˆ̂a− a)

[
ρ− r(t+ ˆ̂a− a) + μ(ˆ̂a, t+ ˆ̂a− a)

]

is rate of consumption growth at (ˆ̂a, t+ ˆ̂a− a) as given by the dynamic Euler equation (18). Thus,

we have

dc (â, t+ â− a)

dM
= c (â, t+ â− a)

{
1

c (a, t)

dc (a, t)

dM
+

∫ â

a

dgc(ˆ̂a, t+ ˆ̂a− a)

dM
dˆ̂a

}
, (29)

according to which the impact of medical progress on consumption at (â, t+ â− a) is governed by

two possibly offsetting effects: the impact on initial consumption c (a, t), which is implicitly deter-

mined through the life-cycle budget constraint, and the impact on the growth rate of consumption

over the life-cycle, the latter of which depends in particular on changes in the interest rate and the

mortality rate. More specifically, medical change tends to increase the growth rate of consumption

at (ˆ̂a, t+ ˆ̂a− a) to the extent that it increases the spread between interest rate and mortality rate

r(t+ ˆ̂a− a)− μ(ˆ̂a, t+ ˆ̂a− a), e.g. by lowering mortality.

Prices: Given the various offsetting effects in (26)-(29) it is difficult to arrive at a general

statement about the impact of medical technology on the VOL and on the demand for health care

without placing undue restrictions on the model. At this point, we therefore content ourselves with
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having identified the various channels through which medical progress feeds on consumption and

the demand for health care and defer a quantitative assessment of the various offsetting effects to

our numerical analysis in Section 6.3.

In the following, let us assume that the production in the final goods and health care sector,

respectively, is described by the set of Cobb-Douglas production functions

Y (t) = KY (t)α [A (t)LY (t)]
1−α (30)

F (t) = KH (t)β [LH(t)]1−β , (31)

with α, β ∈ [0, 1]. The general equilibrium feedback on the demand for health care is then driven

by changes in the market interest rate. Noting from Appendix A3 that all prices in the economy

can be calculated as a function of the interest rate, we show in Appendix A4 that

dw (t)

dM
= − α

1− α

w (t)

r (t) + δ

dr (t)

dM
, (32)

dpH (t)

dM
=

pH (t)

r (t) + δ

β − α

1− α

dr (t)

dM
, (33)

The general equilibrium impact of medical progress on the wage rate as well as on the price for

health care is thus determined by its effect on the market interest rate. Most importantly, the

impact of medical change on the wage rate is always opposite to its impact on the interest rate.

This is because a reduction (increase) in the market interest rate leads to an increase (reduction)

of capital employed in production which translates into an increase (decrease) in the marginal

productivity of labour. The effect of medical progress on the price of health care is ambiguous.

As equation (33) indicates, we have sgndpH(t)
dM = −sgndr(t)

dM if and only if β < α, i.e. if and only if

the capital elasticity is lower in the health care sector as compared to the remaining industry. In

Section 6.1 we will provide empirical evidence to the effect that this is, indeed, the case. Whenever

medical change induces a reduction in the interest rate, this will then lead to a corresponding boost

in the wage rate, which also drives up the price for health care, the latter being produced in a

relatively labour intensive way.

While we are unable to present a closed theoretical expression for the effect of medical progress

on the market interest rate, dr(t)
dM , we can draw on the mechanics of the capital market to derive
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some insight into the matter. Denote by Kd
Y (t, r) and Kd

H (t, r) the capital demand functions in

the final goods and health care sector, respectively. From (21) and (23) it is readily checked that

ceteris paribus capital demand decreases in the interest rate r and does not directly depend on M.

In contrast, the supply of capital Ks (t, r,M) can be shown ceteris paribus to increase with the

interest rate and with the level of technology M. Denote by r (t) the interest rate that equilibrates

the capital market such that Kd
Y (t, r (t)) +Kd

H (t, r (t)) = Ks (t, r (t) ,M) in period t and consider

now an improvement in medical technology, dM > 0. While it is difficult to assess the general

equilibrium impact, it is easy to see that the instantaneous impact involves an outward shift of the

capital supply function and, thus, Kd
Y (t, r (t)) +Kd

H (t, r (t)) < Ks (t, r (t) ,M + dM). The excess

supply of capital then implies a downward pressure on the interest rate, dr(t)
dM < 0. But then an

improvement of medical technology should also imply dw(t)
dM > 0 and dpH(t)

dM > 0. This intuition is,

indeed, confirmed by the numerical analysis in Section 6.3.1.

Economic performance (GDP): Finally, consider the impact of medical progress on the

GDP per capita as a measure of economic performance. Note that in our framework GDP is

defined as the sum of output in the final goods and health care sector, as measured in units of the

final good, GDP (t) = Y (t) + pH (t)F (t) . Expressing GDP per capita

GDP (t)

N (t)
=

L (t)

N (t)

GDP (t)

L (t)

as the product of the employment rate L(t)
N(t) and the GDP per worker GDP (t)

L(t) it is easy to see that the

impact of medical progress on economic performance comes (i) through a change in the employment

rate; and (ii) through a change in the GDP per worker. The impact of medical innovation on the

employment rate strongly depends on the age-profile of mortality rates and their dependency on

medical progress. While the dependency is generally ambiguous, we would conjecture that in

developed economies in which technology-related gains in survival are concentrated amongst the

older population, the likely impact of medical progress on the employment rate is negative, and

this is, indeed, confirmed by our numerical simulation calibrated to the US setting.

In Appendix 4 we show that for the Cobb-Douglas functions in (30) and (31) we can write the

equilibrium level of GDP per worker as a function of the employment share λ (t) := LY (t) /L (t)
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and the aggregate capital intensity K (t) /L (t)

GDP (t)

L (t)
=

Y (t) + pH (t)F (t)

L (t)
=

[
1 +

pH (t)F (t)

Y (t)

]
Y (t)

L (t)

=
1− α+ (α− β)λ (t)

1− β
A (t)1−α

[
α (1− β)

β (1− α) + (α− β)λ (t)

]α (
K (t)

L (t)

)α

. (34)

Taking the total differential of this expression with respect to M we can then show that (see

Appendix A4)

d

dM

(
GDP (t)

L (t)

)
=

− (1− α) (α− β)2 [1− λ (t)]

[1− α+ (α− β)λ (t)] [β (1− α) + (α− β)λ (t)]

GDP (t)

L (t)

dλ (t)

dM

+α
GDP (t)

K (t)

d

dM

(
K (t)

L (t)

)
. (35)

As is readily verified we have that d
dM

(
GDP (t)
L(t)

)
> 0 holds if dλ(t)

dM ≤ 0 and d
dM

(
K(t)
L(t)

)
≥ 0. Thus,

medical progress tends to raise GDP per worker if (i), for a given structure of the economy as

described by the employment share λ (t) , it leads to capital deepening, i.e. to an increase in the

economy-wide capital intensity K(t)
L(t) ; and (ii) it induces a shift in resources to the more labour

intensive health care sector, as measured by a decline in the employment share of final goods

production λ (t) .20 Our numerical analysis in Section 6.3.1 shows that, indeed, medical innovation

triggers both an increase in the aggregate capital stock per worker and a reduction in final goods

employment. Thus, its impact on the GDP per worker is unambiguously positive. Whether or not

this induces an increase in GDP per capita then depends on the extent to which the the employment

rate L (t) /N (t) is curbed by medical progress. For the US health care context studied in Section

6.3.1 , we find the increase in the GDP per worker to be the (weakly) dominating effect.

6 Numerical Analysis

Following a description of our numerical analysis, we present the outcomes for three scenarios,

consisting of a benchmark and two numerical experiments. The benchmark features a realistic

economy calibrated to US data, reflecting the year 2003. The experiments involve (i) the impact of

an unanticipated medical advance, leading to a reduction in mortality; and (ii) the impact of the

20It is easy to verify that a decline in the employment share λ (t) will in optimum be accompanied by a decline in
KY (t) /K (t) .
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same advance when it is anticipated.

6.1 Specification of the Numerical Analysis

The main components of our numerical model are specified as follows.

Demography

With model time progressing in single years, individuals enter the model economy at age 20 and

can live up to a maximum age 100.21 In our model, a ”birth” at age 20 implies that ω = 80.

Population growth is partly endogenous due to endogenous mortality and partly exogenous due to

a fixed growth rate of ”births” ν = 0.013, which is calibrated to match the elderly share of the

adult (20 years and older) US population, equalling 17.6% according to the decennial census in the

US in 2000. Due to the exogenous path of births, our results will not be confounded by a variation

in birth numbers across the experiments.

Mortality

The force of mortality μ is endogenously determined in the model, depending on health care, h, as

a decision variable; an exogenous level of medical technology, M ; and an exogenous age-dependent

base mortality, μ̃ (a). As not all reductions in mortality can be attributed to health expenses or

technological progress (see e.g. Hall and Jones 2007), we introduce an exogenous factor I(a) that

captures changes in age-dependent mortality rates due to exogenous circumstances. Generalising

Kuhn et al. (2011, 2015) we formulate

μ(a, t) = μ̃(a) ·
(
I(a)− η(a) [h(a, t) ·M(t)]ε(a)

)
,

where η(a) and ε(a) are parametric functions that reflect decreasing efficiency of health care with

age, where ε(a) reflect the age-specific elasticity of mortality with respect to health care demand

as reported in Hall and Jones (2007). The base mortality μ̃(a) reflects a mortality profile that is

higher in level (to a sufficient extent) than the US mortality in the year 2003, which we aim to

replicate in the calibration. For this purpose we employ for μ̃(a) single year mortality rates for

21We follow the bulk of the literature and neglect life-cycle decisions during childhood.
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the year 1950 in the US, as reported in the Human Mortality Database (HMD) (see Figure 1a).

The age-dependent parametric functions η(a) and I(a) are then chosen to approximate age-specific

health expenditures and mortality μ(a, t) in the year 2003.22 We normalise the state of medical

technology to the year 2003 and, thus, set M(t) ≡ 1 in the benchmark case.
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(a) US 1950 and 2003 Force of mortality (HMD)

20 30 40 50 60 70
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
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Figure 1: Mortality and labor employment age-profiles

Utility

We assume instantaneous utility to be given by

u(a, t) = b+
(c(a, t)− c0)

1−σ

1− σ
,

where c0 = $11000 is an exogenous minimal consumption level.23,24 We choose the inverse of the

elasticity of intertemporal substitution to be σ = 1.75 which is within the range of empirically

consistent values, as suggested by Chetty (2006). Setting b = 8 then guarantees that u(a, t) ≥ 0

throughout. Furthermore, b = 8 generates a VOL that lies within the range of plausible estimates,

as suggested in Viscusi and Aldy (2003). Finally, we assume a rate of time preference ρ = 0.02.

22Note that I(a) only influences mortality (because μh is independent of I), whereas η(a) also influences the demand
for health care. The 2003 mortality rates are again taken from HMD. Due to limited data availability, we use health
expenditure data for the year 2000, as provided in Meara et al. (2004).

23Dollar values are to be interpreted as year 2003 Dollars throughout.
24We use the minimum consumption for reasons of improving the fit of the consumption profile. While the minimum

level is never hit in optimum, it helps to avoid an unrealistically sharp drop in consumption and consequently debt
repayment during the oldest ages. The level of the minimum consumption profile is thus set such that assets of the
elderly never fall below zero.
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Effective labour supply and income

We proxy the effective supply of labour l̂ (a) by an age-specific income schedule (see Figure 1b),

constructed from 2003 earnings data, as contained in the Current Population Survey (CPS) provided

by the Bureau of Labor Statistics (BLS). We rescale the schedule such that the employment-

population ratio L(t)/N(t) matches the empirical value of 62% for the US in 2003 as reported by

the BLS. Individuals at the age 65 or older are assumed to have no income from labour but receive

a fixed social security pension for the remainder of their lifetime, as detailed further on below.

Production

There are two production functions in the model. Production of the final good is described by

Y (t) = KY (t)
α(A(t)LY (t))

1−α,

where KY (t) and LY (t) denote capital and labour in final good production, where LY (t) is the

workforce working in this sector, and whereA(t) is an exogenous technology index. A(t) is calibrated

so that l(50)w(t) matches the average earnings of a 50-year old in 2003; the elasticity of capital α

is chosen to be 1/3.

The health care sector produces medical goods and services that individuals purchase with a

view to lowering their mortality. Its production is given by

F (t) = KH(t)β(LH(t))1−β ,

where KH(t) and LH(t) denote capital and labour in this sector. For the production elasticity of

capital in the health care sector we take an estimate from Acemoglu and Guerrieri (2008) and set

β = 1/5. Finally, we assume a rate of capital depreciation equal to δ = 0.05.

Health Insurance, Medicare and Social Security

Health expenditures are subsidised through two different sources: (a) private health insurance with

coinsurance rate φP and (b) Medicare for the elderly (available after retirement) with coinsurance

rate φMC . Private health insurance is financed through a ”risk-adequate” premium equal to the
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expected health expenditure covered by the insurance for an individual at a given time and age.

It is thus given by τP = [1− φP (a, t)] pH(t)h∗(a, t), where h∗(a, t) denotes the equilibrium demand

for health care at (a, t). Following Zhao (2014) we assume that 70% of the US workforce is health

insured, with 70% of expenses being covered (in 2000). Thus, we assume that 51% of health

expenditures are paid out-of-pocket on average among the working population. Zhao (2014) states

that 35% of the elderly have health insurance with a coverage of 30%, leading to average health

insurance subsidies of 10.5%. Medicare is financed through a payroll tax, with the rate τ̂MC

being endogenously determined such that the Medicare budget constraint holds. We assume that

Medicare covers 38 % of the health expenses of the elderly25. This results in 51.5% out-of-pocket

expenditures for the elderly. In total, the out-of-pocket share of health expenses paid by the

individual is

φ =
{ 0.51 if a < aR

0.515 if a ≥ aR,

where aR is the mandatory age of retirement. The budget-constraint for Medicare is given as

follows:

∫ ω

aR

[1− φMC(a, t)] pH (t)h(a, t)N(a, t)da = τ̂MC(t)w(t)L(t),

where 1 − φMC(a, t) is the share of health expenditures paid by Medicare and where τ̂MC is the

payroll tax for Medicare.

Social security, received by retirees, is financed through a payroll tax which is determined

endogenously from the social security budget constraint:

∫ ω

aR

π(a, t)N(a, t)da = τ̂Π(t)w(t)L(t),

where π(a, t) is the social security pension and τ̂Π the payroll tax devoted to social security. We

assume social security benefits to be exogenous and use the CPS Annual Social and Economic

Supplement data for the year 2003 which states an approximately $10300 mean social security

25This value was calculated based on the following data of the US economy in 2003: Share of the elderly in total
health spending =40% (NHEA); health share in the GDP =15% (NHEA); Medicare share in the GDP =2.3% (Zhao,
2014).
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income for individuals aged 65 years or older in 2003. Thus, we set π(a, t) = $10300 for a ≥ aR

and otherwise to zero.

Altogether, individuals face the following taxes (including the premium for the private health

insurance):

τ(a, t) = τ̂Π(t)l(a)w(t)︸ ︷︷ ︸
=τΠ(a,t)

+ τ̂MC(t)l(a)w(t)︸ ︷︷ ︸
=τMC(a,t)

+ [1− φP (a, t)] pH(t)h∗(a, t)︸ ︷︷ ︸
τP (a,t)︸ ︷︷ ︸

=τH(a,t)

.

Overview of Functional Forms and Parameters

Table 1 summarises the functional forms and parameters we are employing. Table 2 shows further

parameters and functional forms that are used in the calibration to match various empirical mo-

ments. The ≡ symbol denotes that the function is assumed to be constant in all arguments.

Parameter & Functional Forms Description

ω = 80 life span

t0 = 120 entry time of focal cohort, year 2003

ρ = 2% pure rate of time preference

σ = 1.75 inverse elasticity of intertemporal substitution

c0 = $11000 subsistence minimum

aR = 65 mandatory retirement age

δ = 5% rate of depreciation

α = 1/3 elasticity of capital in Y

β = 1/5 elasticity of capital in F

u(a, t) = b+ (c(a,t)−c0)(1−σ)

1−σ instantaneous utility function

B(t) = B0 exp[νt] number of births

s(t) = ΥB(t)
N(t) transfer from accidental inheritances

Y (t) = KY (t)
α(A(t)LY (t))

(1−α) production in manufacturing sector

F (t) = KH(t)β(LH(t))1−β production in health sector

μ(a, t) = μ̃(a)
(
I(a)− η(a) [h(a, t)M(t)]ε(a)

)
age-time specific mortality rate

φ (a, t) = {0.51 if a < aR, 0.515 if a ≥ aR} age-specific total coinsurance

Table 1: Parameters and functional forms
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Parameter & Functional Forms Description Moments to match

b = 8 constant offset in utility function Value of Life

ν = 0.013 growth rate of births Population share of 65 years and older

I(a) exogenous impacts on mortality Life-expectancy

ε(a) concavity in mortality function Age-specific health expenditures

η(a) effectiveness of health care Age-specific health exp. and life-expectancy

M(t) ≡ 1 medical technology Aggregate health exp. and life-expectancy

A(t) ≡ 2.995 manufacturing technology GDP per capita

π (a, t) = {0 if a < aR, $10300 if a ≥ aR} pension Social Security

φP (a, t) = {0.51 if a < aR, 0.895 if a ≥ aR} age-specific private coinsurance Data in Zhao (2014)

φMC (a, t) = {1 if a < aR, 0.62 if a ≥ aR} age-specific Medicare coinsurance Data in Zhao (2014)

Table 2: Moments to match

In the following, we will present the numerical results (see Appendix A5 for details on the

solution of the numerical problem) for the benchmark case and two numerical experiments. We

focus on a selection of the most salient outcomes.26

6.2 Benchmark

In order to economise on space we illustrate the benchmark allocation in the same graphs as our

first experiment: unanticipated medical advance (see Figures 3-5). The benchmark allocation is

depicted by blue, solid plots throughout, whereas the experiments are depicted by green, dashed

plots. Some figures also contain red, dotted plots, which refer to a partial equilibrium allocation.

The salient features of the benchmark allocation can be summarised as follows. Consumption

of the focal cohort, entering at t0 = 120 (when they are 20 years old), is hump-shaped (see Figure

3). The fact that the interest rate (approx. 4.3%) lies above the rate of time preference (2%)

implies a rising consumption until around age 70. Due to missing annuity markets, consumption

falls, however, at higher ages as implied by the individual Euler equation (18). Individual health

expenditures follow a hump-shaped pattern (Figure 3). While the demand for care grows very

moderately up to age 40, it exhibits from then on a strong increase up to age 80 before dropping

again for the highest ages. Figure 2 illustrates our model fit with respect to age-specific health care

expenditures27. Similar to the simulation in Hall and Jones (2007), we underestimate health care

26A full set of outcomes is available from the authors on request.
27The age-specific health care expenditure data from Meara et. al (2004) and those from Hall and Jones

(2007) were both taken from the simulation programme employed by Hall and Jones (2007), as available at
http://web.stanford.edu/ chadj/datasets.html.
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expenditures until approximately age 40 and overestimate them until the peak at approximately

age 80. This is likely due to our focus on health care expenditures affecting survival, as opposed to,

for instance, costs caused by pregnancy. Nevertheless, we match age-specific health expenditures by

Meara et. al (2004) until age 80 within a reasonable margin of error. While health care expenditures

do not fall in Meara et. al (2004), who use an open age interval for all ages 80 years and older, our

result of falling health expenditures after age 80 is in line with the simulation in Hall and Jones

(2007) and the qualitative life-cycle pattern observed in Martini et al. (2007).28
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Figure 2: Health care expenditure over lifetime from the simulation in Hall and Jones (2007) (blue,
solid line), the empirical data in Meara et. al (2004) (green, dashed line) and the MEDPRO
Simulation (red, dotted line)

The value of life (VOL) peaks at approx. age 50 (Figure 3), which is consistent with empirical

evidence on the value of a statistical life in Aldy and Viscusi (2008). In our model, the hump-shaped

age-profile of the VOL follows the equally hump-shaped age profile of individual consumption. In

line with (20), the VOL increases during early life where consumption levels are low (yet) such that

the value of life years written off falls short of a (yet) high return on the VOL. This relationship

reverses in old age. The remaining life expectancy at age 20 is 58.0 years in the benchmark case

and, thus, matches the empirical value for the US in 2003 (58.1 years, HMD) very closely.

28Indeed, the averaging of health care expenditures across the highest age groups is prone to mask an ultimate
decline with age as the population shares used for the weighting are rapidly declining, too. Furthermore, a hump-
shaped pattern is not inconsistent with the finding that health care utilisation/expenditure increases with the closeness
to death (e.g. Zweifel et al. 1999). This is because the ”cost of dying” itself is declining with age for the highest ages
(e.g. Cutler 2007).
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It is worth of note that given our assumption of constant A, M and ν, prices and per-capita

quantities are constant in the benchmark scenario. Thus, a steady state appears to exist although

we are not imposing it. In the benchmark model GDP per capital amounts to $39700 [$39700

according to Table 1.5.5 of the revised National Income and Product Accounts of the Bureau of

Economic Analysis (BEA), 2003], and health expenditures per capita to $5720 [$5750 according to

NHEA, 2003]. The health share (in GDP) in the benchmark case is 14.4% and matches the data

from the National Health Expenditure Accounts provided by CMS.29 Furthermore, the benchmark

model features a Medicare share of 2.3% [2.3% according to Zhao (2014)]. A summary of the

model’s fit is provided in Table 3.30,31

Name Data Benchmark Medical advance

Capital-output ratio 3.1 3.3 3.5

GDP per capita $39700 $39700 $40000

Health spending per capita $5750 $5720 $6420

Health spending (% of GDP) 14.4% 14.4% 16.0 %

Life expectancy at age 20 58.1 58.0 59.5

Medicare payroll tax rate, τ̂MC 2.9 % 3.4 % 3.8 %

Medicare expenditures (% of GDP) 2.3% 2.3 % 2.7 %

Population share 65 years and older 17.6 % 17.5 % 18.4 %

Employment-Population ratio 62 % 62 % 61.5 %

Table 3: Fit of the benchmark model (data provided for the year 2003) and outcomes for an
unanticipated medical advance

Before setting out on the experiments a clarifying remark is warranted on the purpose and

design of our numerical analysis. The main objective of our analysis lies in an analytical and

quantitative understanding of the mechanisms which are underlying the macro-economic impacts

of medical change. In order to avoid that these impacts are confounded by other sources of change,

we have structured our numerical analysis in a way that the economy is ”quasi-stationary” in the

29GDP and the health share are calculated as GDP (t) = pH(t)H(t) + Y (t) and pH (t)H(t)
GDP (t)

= pH (t)H(t)
pH (t)H(t)+Y (t)

, respec-
tively.

30The capital-output ratio was calculated as the ratio of the capital stock and the gross domestic product as
provided in the National Income and Production Accounts of the Bureau of Economic Analysis (BEA) in 2003. In
the model it is calculated as K(t)/GDP (t).

31Note, that the population share of individuals aged 65 or older as well as the employment-population ratio refers
to the total population aged 20 or older.
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years surrounding the shock. This is why we are abstracting from time-trends in the states of

technology, A (t) and M (t) as well as in the birth rate ν, the appropriate calibration of which

would have allowed us to arrive at a more realistic dynamic representation of the economy.32 This

notwithstanding, we have calibrated the model to the US economy in the year 2003 in order to

provide a realistic static backdrop for our experiments.

6.3 Medical Advance

6.3.1 Unanticipated Medical Advance

We consider here an unanticipated increase in the state of the medical technology from M (t) = 1

for t ≤ 150 to M (t) = 2 for t > 150. The advance of medical technology renders the use of health

care in lowering mortality more effective.33 The timing implies that the focal cohort, entering the

model at t0 = 120, is aged 50 at the point of the innovation.

Based on a comparison of steady-state values, we find that the innovation raises the remaining

life-expectancy of a 50 year old by some 1.1 years and induces additional (discounted) expenditures

of about $19000 over the remaining life-course. These magnitudes are broadly in line with evidence

provided by Cutler (2007) on the impact of revascularisation, as was introduced into the US during

the late 1980s. Cutler finds that for a patient with myocardial infarction, revascularisation would

raise life-expectancy by about 1 year and induce about $40000 in additional expenditure. While

the impact of innovation in our model is, thus, comparable in the order of magnitude, it should be

borne in mind that the figures are not directly comparable, as in Cutler (2007) the values apply

(ex-post) to individuals who have had a heart attack, whereas in our model they apply (ex-ante)

to the representative agent on whom we are building our macroeocnomic analysis.

At the level of the representative individual, we find the following effects of an unanticipated

32For instance, we could match both, the age-structure and the rate of population growth in 2003 (0.9%) by
assuming an appropriate time-profile of the birth rate ν prior to the year 2003. While this would give us a (more)
realistic description of the demographic change following the year 2003, the impact of this on the economy would
interfere with our experiments.

33To see this note that

μh(a, t) = −μ̃(a)η(a)ε(a)M(t)ε(a)h(a, t)ε(a)−1 < 0,

μM (a, t) = −μ̃(a)η(a)ε(a)M(t)ε(a)−1h(a, t)ε(a) < 0,

μhM (a, t) = −μ̃(a)η(a)(ε(a))2[M(t)h(a, t)]ε(a)−1 < 0.
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Figure 3: Life-course consumption, health expenditure and value of life profiles for benchmark case
(blue, solid line), for the unanticipated shock of M in the general equilibrium (green, dashed line)
and the partial equilibrium effect (red, dotted line)

medical advance: As Figure 3 illustrates, and as one would expect, the innovation induces indi-

viduals at age 50 to reallocate expenditure from consumption to health care. Indeed, the drop in

consumption is persistent over the remaining life-cycle but the highest ages, where the increase in

survival chances induces individuals to raise consumption. When it comes to the impact of the

innovation on the demand for health care (as measured by individual health expenditure), a more

ambiguous picture emerges in Figure 3: For a given set of prices, the expenses for medical care

would increase for all age groups by a substantive amount (see the red, dotted plot). However, such

a partial equilibrium take is inappropriate, as the general equilibrium impact of the innovation on

the underlying demand and supply system needs to be taken into account. Once we do this, much

of the demand expansion vanishes (see green, dashed plot). This notwithstanding, the medical

innovation raises remaining life-expectancy at age 20 from 58.0 to 59.1 years for a member of the

focal cohort. Notably, the strong increase in demand for a constant set of prices would induce an

additional gain of only 0.35 life years.

Equation (26) affords some insight into the demand response of individual health care to medical
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progress. Obviously, the increased marginal effectiveness of health care through medical progress

(μhM < 0) boosts demand, an effect that is consistent with the empirical evidence in Baker et

al. (2003), Cutler and Huckman (2003), Wong et al. (2012) and Roham et al. (2014).34 The

effect is dampened, however, by the ensuing reduction in consumption over the remaining life-time,

which tends to diminish the VOL (but within the highest age groups) and, thus, the individual’s

willingness to pay for health care. Notably, the consumption level tends to drop because a greater

part of the life-cycle budget is allocated to health care and because the remaining budget now

needs to be spread over a longer life-time. According to Equation (29), however, improved survival

chances also induce individuals to shift consumption into higher age classes, a force that leads to

increasing consumption at the highest ages.

Overall, the reallocation of resources from consumption to health care in response to medical

progress tends to be substantive in a partial equilibrium context. In general equilibrium, it is

subject, however, to additional impacts from the price changes induced. Most notably, medical

progress triggers a reduction in the market interest rate r and an increase in the price for health

care pH (which will be discussed later).35 While the reduction in the market interest rate works to

increase the value of life and, thus, boosts health demand, the negative impact of a rising price of

health care is dominating. Hence, in the general equilibrium scenario health demand is dampened

compared to the partial equilibrium case due to the price increase for health care. We find that

while per capita health care expenditure would increase by some 30 percent in partial equilibrium,

in general equilibrium they increase by only 12.2 percent, and, thus, by less than a half.36

Although per capita demand for health care and the associated expenditure, pH(t)H (t) /N (t),

have increased after the innovation, (see Figure 4 ) the magnitude of the effect varies across age-

groups. Specifically, those over 80 exhibit a very modest demand increase in spite of the innovation.

For these cohorts the willingness to pay for care, as measured by the VOL, is so low that the value of

34Roham et al. (2014) also show that the bulk of the expenditure increase associated with more intensive treatments
lies with the age groups 55 and over with a peak increase within the age group 75-79 [see their Figure 6]. Qualitatively,
this is very similar to the age-profile of the expenditure increase in our model.

35The increase in the price of health care is well in line with the fact that the US consumer price index (CPI) for
medical care consistently grows in excess of the CPI for all items (see US Bureau of Labor Statistics).

36Fonseca et al. (2013) find within a partial equilibrium model calibrated to the US context that over the time
span 1965-2005 an increase of health care expenditure by 247 percent and an increase in life expectancy by 9.6 years
could be attributed to medical change. Assuming linearity, this would imply that an innovation-induced increase in
life expectancy by 1.1 years would be associated with an increase in expenditure by 28 percent, which is consistent
with our partial equilibrium result.
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the survival gains from the innovation barely outweighs the price increase. Finally, and strikingly,

the medical innovation leads to a reduction in the VOL of the focal individual past age 50 at which

the innovation has become available (see Figure 3). At face value, the lower willingness to pay for

survival follows from the reduction in consumption over the remaining life-course.

However, a different interpretation can be attached to it in light of the fact that the demand of

health care is non-decreasing in response to the medical innovation over the full life-cycle. Rewrit-

ing the first-order condition for the demand of health care (14) to ψ (a, t) = −φ (a, t) pH (t)μ−1
h ,

we find that the VOL is equated to the effective (or quality-adjusted) price of medical care

−φ (a, t) pH (t)μ−1
h , the latter depending on both the market price and the marginal impact on

mortality of health care, −μh. Recalling that μhh > 0, an increasing demand for care would ceteris

paribus imply a greater effective price. But then it must be true that the medical innovation has low-

ered the effective price for medical care (recall that μhM < 0) to an extent that it over-compensates

the increase in the market price, pH (t) . Notably this finding is consistent with evidence produced

by Cutler et al. (1998) who find that while the price for heart attack treatments, as measured by

a Service Price Index, was increasing over the time span 1983-1994, the quality-adjusted price was

effectively declining. From this perspective, the decline in the VOL following the medical innova-

tion can be interpreted in terms of basic consumption theory: An optimal choice between the two

goods, survival and consumption, is given if the marginal rate of substitution between survival and

consumption, i.e. the VOL, equals the price of survival in terms of consumption goods, i.e. the

effective price of medical care. But then a decrease in the price of survival triggers a reallocation

from consumption to survival (through the purchase of additional health care), implying a decline

in the marginal rate of substitution and, thus, in the VOL.

The innovation at t = 150 induces an increase in the health expenditure share of the GDP by

some 1.6 percentage points (Figure 4, left panel; and Table 3). Underlying this increase in the health

share is a strong increase in per capita health expenditure by some 12.2 percent (in the new steady

state). The right panel in Figure 4 decomposes the increase in per capita health expenditure into

an increase in individual demand at each given age, h (a, t) , given the pre-innovation age-structure

and price for health care (corresponding to the cyan, dashed-dotted line), the additional impact

of a changing age-structure, as measured by the age-shares N (a, t) /N (t) (corresponding to the

distance between the cyan, dashed dotted and the red, dotted lines), and the increase in the price
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Figure 4: Health expenditure share of GDP (left panel) and health expenditure per capita (right
panel) for the benchmark (blue, solid line) and for the unanticipated increase in M in general
equilibrium (green, dashed line). The cyan, dashed-dotted line indicates the pure shift in individual
demand, h (a, t) , holding the population shares, N (a, t) /N (t) , and the price of medical care,
pH (t) , constant. The red, dotted line denotes the effect holding only pH (t) constant.

for health care, pH (t) (corresponding to the distance between the red, dotted and the green, dashed

line). Overall, the instantaneous boost to demand amounts to a 6.7 percent increase in medical

expenditure per capita (=55 percent of the total increase), with a further 2.8 percent increase

following during the adjustment process (=23 percent of the total effect). The reason for why

individual demand increases over and above the instantaneous impact lies with the fact that later

born cohorts have been able to accumulate additional savings for the purchase of health care. The

shift in the population structure toward higher ages with more intensive health care needs amounts

to an expenditure increase by 1.8 percent (=15 percent of the total effect), with the price increase

adding another 0.9 percent (=7 percent of the total effect). While a total of 78 percent of the

increase in per capita health expenditure following the innovation is, thus, explained by the boost

to individual demand, induced population ageing and price inflation play a significant part over

the transition phase.

The shift from final goods production to health care that is following the innovation leads to

a reduction of the employment share in the manufacturing sector, a reduction in the interest rate

and an increase in the wage rate (see Figure 5). The change in the factor prices comes with an

increase in the price of health care,37 which is underlying the dampening of the demand response to

innovation.38 Furthermore, the social security payroll tax rises, following the pronounced increase

37According to Equations (32) and (33) the increase in the wage rate and in the price of health care is directly
linked to the lower market interest rate.

38A partial equilibrium perturbation of pH enables us to determine the price elasticity of per-capita health care
expenditures for the benchmark calibration. We find a price elasticity of −0.3, which is close to the estimated mean
elasticity of −0.2 determined in the RAND Health Insurance Experiment (Manning et. al. 1987).
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Figure 5: Market prices, employment share and taxes

in longevity, despite the simultaneous increase in the gross wage. Similarly, Medicare payroll taxes

increase as a consequence of both greater health spending and the boost in longevity.

These sectoral and price adjustments notwithstanding, the medical advance has very little

impact on GDP per capita (see Table 3). The survival gains induced by the innovation are great-

est among older cohorts and, for a fixed retirement age, lead to a 1 percent reduction in the

employment-population ratio, L (t) /N (t).39 At the same time, however, the expansion of the ex-

pected retirement period and the prospect of greater health expenditures in the presence of a more

effective medical technology trigger additional savings, translating into a 4 percent increase in the

39The medical innovation raises the remaining life expectancy at age 20 by 1.0 years from 58.04 years (and, thus,
by 1.3 percent) and remaining life expectancy at age 65 by .81 years from 18.02 years (and, thus, by 4.5 percent).

33



capital stock per capita, K (t) /N (t)40 Overall, this leads to capital deepening, i.e. to a higher

K (t) /L (t), which in optimum induces a shift of resources to the more labour intensive health care

sector.41 As we have shown in Section 5, both the increase in K (t) /L (t) and the shift in resources

to the health care sector lead to an increase in GDP per worker. Our numerical analysis shows

that for the US context we are studying, this effect is strong enough to compensate (even mildly

over-compensate) the decline in the employment rate.

Thus, we can summarise the following set of insights.

Result 1 (i) Medical innovation leads to a reallocation of consumption to health care expenditures

for all but the highest ages, and to a reallocation of consumption to higher ages. (ii) The

general equilibrium impact of a mortality reducing medical innovation on the demand for

health care tends to be dampened by an associated price increase. (iii) About 78 percent of the

increase in per capita health care expenditure following a medical innovation are due to an

increase in individual demand, about 15 percent are due to induced population ageing, and 7

percent are due to a price increase. (iv) Medical innovation leads to a reduction in the VOL

and in the effective (quality-adjusted) price for medical care. (v) Medical innovation tends to

stimulate additional saving. (vi) The ensuing increase in the economy-wide capital intensity,

combined with the shift of employment into the health-care sector increase the economy-wide

productivity, i.e. GDP per worker by enough to compensate the reduction of the employment-

population ratio, leading to little impact on GDP per capita.

It is worth noting that the transitional dynamics following a medical innovation tie in closely

with recent findings about the impact of capital deepening on the structural composition of an

economy. Specifically, Acemoglu and Guerrieri (2008) show for a two-sector economy that capital

deepening, i.e. an increase in the economy-wide capital intensity tends to raise the output share of

the capital-intensive sector but at the same time induces a shift of both labour and capital inputs

into the labour intensive sector. These shifts are accompanied by an increase in the wage rate,

as is the case in our model. Acemoglu and Guerrieri (2008) go on to show that the same process

is underlying unbalanced growth whenever productivity growth is larger in the capital-intensive

40Indeed, these channels have been confirmed empirically by Bloom et al. (2003) and De Nardi et al. (2010).
41As we have seen already, these shifts in quantities are accompanied by an increase in the wage rate, the latter

inducing an increase in the price for health care.
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sector (see also Baumol 1967).

While the transition to a new equilibrium that is following a medical innovation in our model

follows a similar process of unbalanced growth à la Baumol (1967), this is for rather different

reasons. First, technical progress occurs in the health care sector; second, and importantly, medical

progress works through the household side of the economy: Through its impact on survival and the

consequent shift of the age-structure toward older cohorts, medical progress triggers an increase

in savings, and, thus, in the per capita supply of capital while at the same time reducing the per

capita supply of labour. Notably, this impact is present even when holding the aggregate demand

for health care fixed. As we have seen, capital deepening and the sectoral shift combine to render

the overall economy more productive, as measured by GDP per worker.

6.3.2 Anticipated Medical Advance

In many instances, medical advances do not arrive as ”shocks”, but they are anticipated in terms of

prior medical research and/or the clinical trials leading to the admission of new medical technologies

or pharmaceuticals. Thus, it is appropriate to take into account consumers’ anticipation of such

innovations. In the following, we consider once again a medical innovation from M (t) = 1 to

M (t) = 2, but assume now that it is fully anticipated. In order to gain a better understanding

of the anticipation effect we assume that the innovation is taking place at t = 200, with the focal

cohort entering at t0 = 170.

To study the role of anticipation in modulating the impacts of medical innovation, it is instruc-

tive to focus on macroeconomic variables.42 Figure 6 plots how the health share of GDP, the health

care expenditures per capita, and the employment share in the production sector, LY (t)/L(t) re-

spectively, develop over time when individuals are anticipating the innovation. For the moment, we

focus on the blue, solid line, representing the benchmark scenario as well as on the green, dashed line

representing the anticipated advance in technology. Each of the three quantities exhibits a particu-

lar pattern, reflecting the impact of anticipation at aggregate level. Reading the figures backwards

in time, the innovation at t = 200 eventually leads to the expected increase in the health share and

42As compared to the previous case of a non-anticipated medical innovation, anticipation does not vastly alter
the life-cycle allocation of the focal cohort. One distinction is that consumption is reduced smoothly over the full
life-cycle, allowing the individual to avoid the utility loss from a sudden drop in consumption at the arrival of the
innovation.
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Figure 6: Macroeconomic variables for benchmark case (blue, solid line), for the anticipated advance
in M (green, dashed line) and anticipated advance where health demand is fixed before the shock
of M (red, dotted line)

in the per capita expenses on health care over and above their respective benchmark levels, as well

as to a corresponding shift of employment from production to the health care sector.43

Notably, however, for a time span of about 30 years before the innovation, health expenditures

(and consequently the health share) fall below their benchmark levels. This amounts to an antic-

ipation effect, where individuals postpone the consumption of care to wait for the innovation to

occur.44 The corresponding shrinking of the health care sector is reflected in a temporary boost to

the employment share in final goods production.45

Figure 7 plots the development of the capital per capita, K(t)/N(t), the market interest rate,

r(t), the wage rate, w(t) and the price for health care, pH(t). The paths show a pattern that

43GDP per capita exceeds the benchmark level by a small amount, reflecting the steady-state increase in financial
wealth and the capital stock due to higher longevity after the innovation.

44Such a demand-reducing anticipation effect has been identified empirically in regard to the consumption of
pharmaceuticals prior to the Medicare D reform aimed at including pharmaceutical expenditure into the coverage
(Hu et al. 2014; Alpert 2016, Kaplan and Zhang 2017).

45A close-up look shows that the anticipation-related slump in the demand for health care itself is, in turn, an-
ticipated in as far as prior to the slump, the demand for health care and the employment share in health care are
slightly elevated over and above their benchmark levels. Overall, this amounts to an anticipation wave, akin to the
one described by Feichtinger et al. (2006) for the impact of technological progress on capital accumulation.

36



100 150 200 250 30013

13.5

14

14.5

15
Capital per capita: K(t)/N(t)

$ 
10

00
0

100 150 200 250 3000.036

0.037

0.038

0.039

0.04

0.041

0.042

0.043

0.044
Market interest rate: r(t)

100 150 200 250 3004.35

4.4

4.45

4.5

4.55

4.6
Wage: w(t)

$ 
10

00
0

100 150 200 250 3003.34

3.35

3.36

3.37

3.38

3.39

3.4

3.41
Price for health care: pH(t)

$ 
10

00
0

Figure 7: Capital per capita and market prices

differs distinctly from the one arising in the case of an unanticipated shock (recall Figure 5). The

postponement of health expenditures over the anticipation period translates into higher saving,

an effect that is complemented by an anticipative reduction in per capita consumption below its

benchmark (not shown here). The resulting boost to the capital held by individuals triggers a

decline in the interest rate and a boost to the wage rate. With the health care sector being

relatively labour intensive, the increase in the wage rate drives up the price for health care despite

the deferral of demand. At the arrival of the medical innovation, individuals begin to dissave in

order to purchase greater quantities of what is more effective health care now, and over time capital

per capita falls back to its new steady-state level, which nevertheless lies above the benchmark.

The factor prices and the price for health care do not return to their initial levels either. The

reason for this lies with the post-innovation shift of economic activity towards the more labour

intensive health care sector. Hence, while prices are driven by the supply-side over the anticipation

period, they tend to be determined by the demand-side after the innovation. Finally, the boost in

capital per capita over the anticipation period translates into a temporary boom of the economy,

as measured by GDP per capita (see Figure 6).
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We conclude this second experiment by isolating the drivers behind the changes in the level of

per capita health expenditure. Figure 8a decomposes the change in health expenditure from the

benchmark (blue, solid line) to the outcome under the anticipated medical advance (cyan, dotted

line) into two partial effects: a price effect (red, dashed-dotted line), holding constant per capita

demand H(t)/N(t) at the benchmark level; and a demand effect (green, dashed line), keeping the

price at the benchmark level. The overall impact of the price change is relatively small, accounting

for roughly 8% of the overall increase in per capita expenditure at the point of innovation. Figure 8b

decomposes the changes in the per capita demand for health care (blue, solid line = baseline; cyan,

dotted line = experiment) into a component that reflects changes in the levels of individual demand,

h (a, t) , for the baseline age-structure of the population (red, dashed-dotted line); and a component

that reflects changes in the age-structure for the baseline age-profile of individual demand (green,

dashed line). Similar to the case of an unanticipated innovation, the increase in individual demand

levels is the dominant driver. Notably, there is an over-shooting of individual demand at the point

of innovation, reflecting the short-run economic boom. The subsequent downward adjustment in

the per capita demand for health care toward the new steady state is dampened, however, by the

shift towards an older population with its higher demand for health care.
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Figure 8: Decomposition of per capita health expenditures and demand

We can summarise as follows.

Result 2 The anticipation of a mortality reducing innovation leads to (i) the contraction of the

demand and supply for health care to a level below the benchmark for a period prior to the
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innovation; (ii) the accumulation of extra capital prior to the innovation and for a certain

period, following the innovation; and (iii) to a concomitant reduction (increase) in the in-

terest rate (wage rate and price for health care) prior to the innovation. (iv) By inducing

extra saving, anticipation generates a temporary economic boom. (v) The changes in health

expenditure per capita before and after an anticipated innovation are predominantly demand

driven rather than price driven, with a peak in demand arising at the point of innovation.

One could argue that the reduction in health care in anticipation of an innovation lacks real-

ism in as far as health care bears on survival. We do not wish to imply that individuals facing

life-threatening conditions are deferring treatments. However, anticipatory adjustments are quite

probable in regard to the intensity of given treatments such as e.g. drug prescriptions (Alpert 2016;

Kaplan and Zhang 2017). They are also conceivable in as far as the utilisation of distinct treat-

ments with different intensities respond to current and expected prices and benefits (e.g. Cutler

and Huckman 2003 for treatments of coronary disease). For our representative consumer approach,

changes in the distribution of treatments across the patient population translate into adjustments

in the intensity of care.

These arguments notwithstanding, we have studied an alternative scenario in which the demand

for health care is fixed to the benchmark level before the medical innovation materialises. Although

individuals continue to fully anticipate the advance, they are now restricted in their response to

changes in their saving behaviour. In Figures 6 and 7 this scenario is represented by the red, dotted

lines. In Figure 6, we observe that although the demand for health care is fixed before the shock,

expenditures increase due to an increase in the price for health care. Importantly, however, in this

scenario, too, individuals forego consumption and increase savings in anticipation of the innovation.

The impact is strong enough to trigger a temporary boom similar to the one observed in the scenario

without restriction. Notably the accumulation of additional capital and the associated boost to

GDP sets in even earlier when individuals are not allowed to change their demand for health care

in an anticipative way. Prices react almost identically in comparison to the previous experiment

(see Figure 7). We can, thus, conclude that while changes to the health care sector in anticipation

of a medical innovation are somewhat difficult to predict, the anticipatory boost to savings and,
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consequently, to GDP appears to be a robust result.46

7 Conclusion

We have set out an OLG model built around the endogenous demand and supply of health care. In

contrast to much of the received macro-economic literature on health and health care, our model

involves a rich model of the life-cycle, based on a realistic pattern of mortality. This allows us to

characterise in detail the individual life-cycle allocation of consumption and health care, and to

construct macro-economic aggregates that are based on a realistic age-structure of the population.

At the micro-economic level, we can study in detail how the demand for health care responds to

medical progress, taking into account induced price changes and changes in the willingness-to-pay

for health care, as summarised by the value of life.

Based on a calibration of the model to the US economy in the year 2003, our numerical analysis

is designed to provide a quasi-experimental identification of the channels through which changes

in medical technology are transmitted between individual choices and macro-economic dynamics.

Our numerical experiments yield a number of policy relevant, and potentially challenging, insights.

First, we find that a medical innovation that increases the remaining life expectancy at age 20

by some 1.1 years, boosts health expenditure per capita by some 12.2 percent, with 0.9 percentage

point owing to price inflation, 1.8 percentage points owing to a shift in the age-structure towards

older individuals with greater consumption of health care, and 9.5 percentage points owing to

an increase in individual demand. Our finding that the expansion in health expenditure is mostly

driven by an increase in utilisation is well in line with recent evidence (Bundorf et al. 2009, Chernew

and Newhouse 2012). However, our model also suggests that in spite of its modest contribution to

expenditure growth in accounting terms, the increase in the price for health care has a significant

impact on demand as described in the following.

Second, more than half of the partial equilibrium impact on the individual demand for health

care of a mortality reducing innovation is neutralized in general equilibrium by an increase in the

price for medical care. This result indicates a need for a general equilibrium framework when it

46In a further robustness check, that we do not present here, we assume that the technological advance is fully
anticipated but evolves over a period of 30 years. Again, we observe the same anticipation pattern, albeit smaller in
magnitude, as in the scenario where the advance arrives as a shock.
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comes to assessing the impact of medical change on health care expenditure, as otherwise findings

may be biased.

Third, for an economy with social security and health care organised in similarity to the US (as

of 2003), a costless medical innovation does not have a negative impact on economic performance, as

measured by GDP. This is despite a reduction in the employment rate due to a growing population

of pensioneers. The main mitigating channel is the accumulation of additional savings/capital for

the purpose of financing consumption over an extended life-course and purchasing more effective

health care at a higher price. Indeed, this channel is very much in line with evidence for the US

on savings related to health expenditures in old age (e.g. De Nardi et al. 2010). Overall, the

capital deepening of the economy always combines with the shift in economic activity to the health

care sector in raising GDP per worker. As it turns out for our calibration, this effect more than

compensates the decline in the employment rate. Two caveats are worth of note here: The cost of

medical innovation, e.g. through the absorption of production factors within a medical R&D sector

may after all induce a drag on economic growth (Jones 2016).47 In addition, the question as to

whether additional savings are induced in the wake of a medical innovation is likely to depend on the

particular design of the social security system. To the extent that expenditures during retirement

are financed through public transfers, the savings response is prone to be weaker, implying that

the reduction in the employment rate is not sufficiently offset through the accumulation of capital.

Additional offsetting impacts arise if health improvements not only translate into lower mortality

but also into a greater propensity to provide labour into older ages (Kuhn and Prettner 2016).

Fourth, mortality reducing medical innovations tend to come with a reduction in the value of

life over large parts of the life-course. This finding has two interesting ramifications. At face value,

the reduction in the value of life arises from a reallocation by the individual of resources from

consumption to health care. While per se, this is reflecting an efficient response by the individual

to the availability of more effective health care, it also implies that individuals may be less willing

to prevent risks to their life. Thus, some of the benefits of medical innovations in terms of improved

survival prospects may well be offset by the adoption of less healthy life-styles. As we have shown,

the reduction in the value of life also implies a reduction in the effective (quality-adjusted) price of

47Note, however, that within a decentralised economy with R&D-driven growth a la Romer (1990) the increase in
the capital intensity of final goods production that follows the absorption of (relatively more) labour by a growing
health care sector, provides a stimulus for conventional R&D (Kuhn and Prettner 2016).
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medical care as triggered by the innovation. This is in line with evidence for the US, as provided

in Cutler et al. (1998) and suggests that in settings in which individuals choose the demand for

health care, the value of life can be interpreted as a marginal rate of substitution, the decline of

which reflects a shift in consumption toward survival by means of (additional) health care.

Fifth, anticipation of a medical innovation may come with a deferral in the demand for medical

care prior to the innovation with consequences for the sectoral structure and the price structure.

Furthermore, individuals always reduce consumption and boost their saving in anticipation of the

advance, inducing a boost to the capital stock per capita which is strong enough to trigger a

temporary economic boom. The boom is accompanied by a peak in the nominal price for medical

care at the point of innovation, leading to a dampening of the impact of medical innovation on the

effective price of care. While these effects are only temporary and vanish over the transition to the

long-run steady state, they suggest that care needs to be taken about possible anticipation effects

when assessing the impacts of medical innovation on economic and health outcomes. While we are

unaware of empirical evidence on anticipation effects in the context of medical innovation, their

empirical relevance has been established in the context of health policy reform (Hu et al. 2014,

Alpert 2016, Kaplan and Zhang 2017) and strikes us as conceivable in the innovation context, too,

certainly in regard to the anticipatory boost in savings.

In the present work, we have abstracted from long-run trends to productivity and population

in order to avoid that these trends obfuscate the identification of the transmission channels of

medical progress that were at the heart of this paper. Based on the insights of the present analysis,

we will in future work include more realistic dynamics in regard to productivity growth as well

as background trends of medical progress and population in order to arrive at a quantitatively

more precise assessment of the role of medical change. Work in progress also involves the explicit

modelling of a medical R&D sector in order to analyse the joint dynamics within the nexus of

health expenditure, longevity expansion and medical progress.
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8 Appendix

A1: Optimal Solution to the Individual Life-Cycle Problem

The individual’s life-cycle problem, i.e. the maximisation of (1) subject to (2) and (3) can be
expressed by the Hamiltonian

H = uS − λSμS + λk (rk + lw − c− φpHh− τ + π + s) ,

leading to the first-order conditions

Hc = ucS − λk = 0, (36)

Hh = −λSμhS − λkφpH = 0, (37)

and the adjoint equations

·
λS = (ρ+ μ)λS − u, (38)
·
λk = (ρ− r)λk. (39)

Optimality conditions (13) and (14): Evaluating (36) at two different ages/years (a, t) and
(â, t+ â− a), equating the terms and rearranging gives us

uc (â, t+ â− a)

uc (a, t)
=

λk (â, t+ â− a)

λk (a, t)

S (a, t)

S (â, t+ â− a)

= exp

{∫ â

a

[
ρ+ μ

(̂̂a, t+ ̂̂a− a
)
− r

(
t+ ̂̂a− a

)]
d̂̂a} , (40)

which is readily transformed into the Euler equation (13) as given in the main body of the paper.
Inserting (36) into (37) allows to rewrite the first-order condition for health care as

−μh (a, t)
λS (a, t)

uc (·) = φ (a, t) pH (t) . (41)

Integrating (38) we obtain

λS (a, t) =

∫ ω

a
u (â, t+ â− a) exp

[
−

∫ â

a
(ρ+ μ) d̂̂a] dâ.

Using this, we can express the private VOL as

ψ (a, t) :=
λS (a, t)

uc (a, t)
=

∫ ω

a

uc (â, t+ â− a)

uc (a, t)

u (â, t+ â− a)

uc (â, t+ â− a)
exp

[
−

∫ â

a
(ρ+ μ) d̂̂a] dâ.

Substituting from (40) and rearranging we obtain (15) as given in the main body of the paper.
Inserting this into (41) gives condition (14) in the main body of the paper.
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Dynamics (18) and (19): Total differentiation of (36) with respect to age gives

uccS
·
c+ uc

·
S −

·
λk

= uccS
·
c− ucμS − (ρ− r)λk

= uccS
·
c− (ρ− r + μ)ucS = 0.

From this we obtain the consumption dynamics (18) as given in the main body of the paper.
Holding prices and the state of medical technology constant, total differentiation of−μh (a, t)ψ (a, t)−

φ (a, t) pH (t) = 0 with respect to age gives

−
(
μhh

·
h+ μha

)
ψ − μh

·
ψ − pH

·
φ = 0.

Substituting pH = −μhψφ
−1 from (14) and rearranging, we obtain the dynamics for health care as

reported in (19) within the main body of the paper.

A2: Characterisation of General Equilibrium

For each period t we have the following unknown variables:

• inputs {KY (t) ,KH (t) , LY (t), LH(t)} ,
• prices {r (t) , w (t) , pH (t)} ,
• aggregate demand {C (t) , H (t)} ,

• aggregate net saving, equivalent to the change in the capital stock
·
K (t) ,

summing up to 10 variables. These are determined through

• 4 first-order conditions on factor inputs (21)-(24 ), which give the factor demand functions
{Kd

Y (r, w;A,M,B) ,Kd
H (r, w, pH ;M,B) ,

Ld
Y (r, w;A,M,B) , Ld

H (r, w, pH ;M,B)}, depending on prices as well as on technology and
population {A,M,B} ; 48

• a set of first-order conditions (13) and (14) for a ∈ [0, ω], which together with the individ-
ual’s life-cycle budget constraint determine the age-specific levels of consumption c (a, t) and
health care h (a, t) . Aggregation according to (6) and (7) gives the demand for consumption
C (r, w, pH ;M,B, φ)and health care
Hd (pH ;M,B, φ) , depending on the three prices as well as on technology, population and the
vector of co-insurance rates;49

48Note here that Kd
Y (r, w;A,M) and Ld

Y (r, w;A,M) may vary with M and B through its impact on the aggregate
supply of effective labour L.

49Through the life-cycle budget constraint and the individual Euler equation the demand function C (·) is also
contingent on the expectation about future prices over the remaining life-course. The same applies to the demand
function Hd (·) for which the future price paths filter in through the VOL.
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• 4 market clearing conditions

Kd
Y (r, w;A,M,B) +Kd

H (r, w, pH ;M,B) = K,

Ld
Y (r, w;A,M,B) + Ld

H (r, w, pH ;M,B) = L(M,B),

F (Kd
H (r, w, pH ;M,B) , Ld

H (r, w, pH ;M,B)) = Hd (pH ;M,B, φ) ,

Y (Kd
Y (r, w;A,M,B) , ALd

Y (r, w;A,M,B))) = C (r, w, pH ;M,B, φ) +
·
K + δK,

which determine the set of equilibrium prices

{
r∗

(
A,M,B, φ,

·
K

)
,

w∗
(
A,M,B, φ,

·
K

)
, p∗H

(
A,M,B, φ,

·
K

)}
and aggregate net saving, as captured by

·
K.

A3: Equilibrium Relationships with Cobb-Douglas Technologies

Consider the Cobb-Douglas-specifications in (30) and (31). From the first-order conditions (21),
(22), (23) and (24) we then obtain the (implicit) factor demand functions

Kd
Y (t) =

αY (t)

r (t) + δ
, (42)

Ld
Y (t) =

(1− α)Y (t)

w (t)
, (43)

Kd
H (t) =

βpH(t)F (t)

r (t) + δ
, (44)

Ld
H (t) =

(1− β)pH (t)F (t)

w (t)
. (45)

Combining (42) with (43) and (44) with (45) we obtain the equilibrium capital intensity

k∗Y (t) :=
Kd

Y (t)

Ld
Y (t)

=
α

1− α

w (t)

r (t) + δ
, (46)

k∗H (t) :=
Kd

H (t)

Ld
H (t)

=
β

1− β

w (t)

r (t) + δ
. (47)

and, thus, Kd
Y (t) = k∗Y (t)Ld

Y (t) . Using k∗Y (t) in (30) to rewrite Y (t) = Ld
Y (t)A (t)1−α (k∗Y )

α and
inserting this in (43) we can solve for the equilibrium wage as a function of the interest rate

w∗ (t) = ŵ (r (t) ;A (t)) = (1− α)A (t)

[
α

r (t) + δ

] α

1−α

. (48)

This, in turn, determines the capital intensities k∗Y (t) = k̂Y (r (t) ;A (t)) and k∗H (t) = k̂H (r (t) ;A (t)).
Using the market clearing condition F (p∗H (t) ;K∗

H(t), L∗
H(t)) = Hd (p∗H (t) ;M (t) , B (t)) and (44)

and (45) we obtain the general equilibrium price for health care as

p∗H(t) = p̂H (r(t), w∗ (t) , H∗
d(t))

= p̂H (r (t) ;A (t) ,M (t) , B (t))

=
(r + δ)βw1−β

ββ(1− β)1−β
. (49)
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Reinserting this, we obtain the equilbrium utilisation of health care, as
Hd (p∗H (t) ;M (t) , B (t)) = Ĥ (r(t);A (t) ,M (t) , B (t)). Using (45) we can determine now L∗

H (t) =

L̂H (p∗H (t) , w∗ (t) , H∗
d(t)) = L̂H (r(t);A (t) ,M (t) , B (t)). The labour market equilibrium then

determines
L∗
Y (t) = L (t)− L∗

H (t) ,

where L (t) = L̂ (r(t);A (t) ,M (t) , B (t)).50 This implies the restriction

L̂ (r(t);A (t) ,M (t) , B (t)) ≥ L̂H (r(t);A (t) ,M (t) , B (t)) .

Given this is satisfied, we now have all inputs and outputs as functions of r (t) and the states
{A (t) ,M (t) , B (t)}.

A4: Impact of Medical Technology

Impact on the demand for health care and on the VOL: Totally differentiating the first-
order condition for individual health demand, −φ(a, t)pH (t)− μh (a, t)ψ (a, t) = 0, with respect to
the state of technology M (t) gives

−φdpH − (μhhdh+ μhMdM)ψ − μhdψ = 0

which transforms to

dh (a, t)

dM (t)
=

−1

μhh

[
μhM +

1

ψ (a, t)

(
φ
dpH (t)

dM (t)
+ μh (a, t)

dψ (a, t)

dM (t)

)]
=

−1

μhh

[
μhM + μh(a, t)

(
1

ψ(a, t)

dψ(a, t)

dM(t)
− 1

pH(t)

dpH(t)

dM (t)

)]
. (50)

The impact of technology on the private value of life, as definied in (15), is given by

dψ (a, t)

dM (t)
=

∫ ω

a

dv (â, t+ â− a)

dM (t)
R (â, a) + v (â, t+ â− a)

dR(â, a)

dM
dâ

=

∫ ω

a

dv (â, t+ â− a)

dM (t)
R (â, a)− v (â, t+ â− a)R(â, a)

∫ â

a

dr(t+ ˆ̂a− a)

dM
dˆ̂adâ (51)

where

dv (a, t)

dM (t)
=

(
ucuc − uucc

u2c

)
dc (a, t)

dM (t)

=

(
1− uucc

u2c

)
dc (a, t)

dM (t)
.

Note, that (1 − uucc
u2
c
) is always positive: Assuming b is sufficiently large and c > c0, u(c) =

b + (c−c0)1−σ

1−σ > 0, uc = (c − c0)
−σ > 0 and ucc = −σ(c − c0)

−σ−1 < 0. Equation (26) is then
obtained by inserting (51) into (50).

Impact on the the wage rate and price for health care:51 In the following we derive

50Note that through the impact of the demand for health care on the pattern of survival, labour supply becomes
a function of the prices and the states of the economy.

51In the following, we drop the time index for notational convenience.
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equation (32) and (33). We use equation (48) from Appendix A3 and obtain

dw

dM
= −Aα

1
(1−α) (r + δ)

1
(α−1)

dr

dM

= −A

(
α

r + δ

) 1
(1−α) dr

dM

= − α

1− α

w

r + δ

dr

dM
.

Hence, given equation (49), it then holds, that

dpH
dM

=
1

ββ(1− β)1−β)

[
β(r + δ)β−1 dr

dM
w1−β + (r + δ)β(1− β)w−β dw

dM

]
=

1

ββ(1− β)1−β)

dr

dM
(r + δ)β−1w1−β

[
β − (1− β)

α

1− α

]
=

pH
r + δ

β − α

1− α

dr

dM
.

Impact on the GDP per worker: In the following we will assume Cobb-Douglas specifica-
tions (30) and (31) of the production functions, see Appendix A3 for details. The GDP is defined
as the sum of output value in the health care sector, phF , and in the final good sector, Y . Hence,
GDP per unit of labour is given by

GDP

L
=

1

L

(
pHF + Y

)
=

Y

L

(
pHF

Y
+ 1

)
.

Defining the employment share of the final goods sector as λ := LY
L one can then show that

GDP

L
=

[
1− α

1− β

1− λ

λ
+ 1

]
A1−α

(
KY /LY

K/L

)α

λ

(
K

L

)α

(52)

where we used equation (30) together with

pHF

Y
=

1− α

1− β

1− λ

λ
(53)

which follows from dividing equation (45) by (43) and rearranging The economy-wide capital-
intensity can be expressed as

K

L
=

KY +KH

LY + LH
=

αY + βpHF

(1− α)Y + (1− β)pHF

w

r + δ
=

(1− α)β + (α− β)λ

(1− α) (1− β)

w

r + δ
(54)

where equation (53) was employed. Using in addition (46) we can write

KY /LY

K/L
=

α (1− β)

(1− α)β + (α− β)λ
.

Substituting this into (52) and rearranging we obtain

GDP

L
=

1− α+ (α− β)λ

1− β
A1−α

[
α (1− β)

β (1− α) + (α− β)λ

]α (
K

L

)α
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as reported in equation (34). Taking the total derivative with respect to medical technology
then yields

d

dM

(
GDP

L

)
= (α− β)

GDP

L

[
1

1− α+ (α− β)λ
− α

β (1− α) + (α− β)λ

]
dλ

dM

+α
GDP/L

K/L

d

dM

(
K

L

)
=

− (1− α) (α− β)2 (1− λ)

[1− α+ (α− β)λ] [β (1− α) + (α− β)λ]

GDP

L

dλ

dM

+α
GDP

K

d

dM

(
K

L

)
,

as reported in in equation (35) in the main body of the paper. Note, that the denominator
[1− α+ (α− β)λ] [β (1− α) + (α− β)λ] is positive as follows from equation (54).

A5: Solving the Numerical Problem

We pursue the following steps towards tracing out the numerical solution, sketched here for the
benchmark scenario, using the specific functional forms presented in section 6:

1. We derive from the first-order condition for consumption (13) the relationship

[c (a, t0 + a)− c0]
−σ = [c (0, t0)− c0]

−σ exp

{∫ a

0
[ρ− r(t0 + â) + μ(â)] dâ

}
. (55)

2. We derive the life-cycle budget constraint∫ ω

0

[
w (t0 + a) l (a)− c (a, t0 + a) + π(a, t)

−φ(a, t)pH (t0 + a)h (a, t0 + a)− τ(a, t) + s(t0 + a)

]
R (a, 0) da = 0,

with R (a, 0) as given by (17). We then insert (55) and obtain the consumption level

c (0, t0)− c0 =

∫ ω
0

[
w (t0 + a) l (a)− c0 + π(a, t)

−φ(a, t)pH (t0 + a)h (a, t0 + a)− τ(a, t) + s(t0 + a)

]
R (a, 0) da

∫ ω
0 exp

{∫ a
0

[
1−σ
σ r(t0 + â)− ρ+μ(â)

σ

]
dâ

}
da

(56)

for an individual born at t0, contingent on the stream of health care, h (a, t0 + a) , and the
set of prices {w (t0 + a) , r(t0 + a), pH (t0 + a)} over the interval [t0, t0 + ω] .

3. We derive from the first-order condition for health care (14 ) a vector of age-specific demand
levels

h(a, t0 + a) =

(
λs(a, t0 + a) [c(a, t0 + a)− c0]

σ μ̃(a)η(a)ε(a)M(t0 + a)ε(a)

φ(a, t)pH(t0 + a)

) 1
1−ε(a)

(57)

for all a ∈ [0, ω] .

4. We show in Appendix A3 that the set of prices {w (t0 + a) , pH (t0 + a)} as well as all input
and output quantities can be expressed in terms of the interest rate r(t0 + a) alone.
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5. Using (55) together with (57) we can calculate the life-cycle allocation for consumption,
c (a, t0 + a), depending on the allocation for health expenditures, h(a, t0 + a), ∀a ∈ [0, ω] and
on the set of prices {w (t0 + a) , r(t0 + a), pH (t0 + a)} over the interval [t0, t0 + ω]. Vice versa,
the allocation of health expenditures can be calculated from the allocation of consumption
and the macroeconomic prices.

6. We apply these calculations on initial guesses of c and h iteratively. We then use the results
as an initial guess to the age-structured optimal control algorithm, as presented in Veliov
(2003). This yields an optimal allocation of individual consumption and health expenditures
contingent on an initially assumed r(t0 + a).

7. Drawing on this, we apply the following recursive approximation algorithm: (i) Guess an ini-
tial interest rate r(t0+a) and derive the optimal life-cycle allocation. (ii) Based on this, calcu-
late the market interest rate r∗(t0+a) from the capital market equilibriumKd (r(t0 + a), ŵ (r(t0 + a))) =
Ks (r(t0 + a)) . (iii) Adjust the initial interest rate, so that it approaches r∗(t0 + a), e.g. by
setting r1(t0 + a) := r0(t0 + a) + ε(r∗(t0 + a)− r0(t0 + a)), ε ∈ (0, 1]. The process converges
to an interest rate for which households optimise and capital demand equals capital supply.
The output market clearing condition, Y (t0 + a) = C(t0 + a) + K̇(t0 + a) + δK(t0 + a) then
determines the dynamics of the capital stock to the next period. (iv) This process is reiterated
in a recursive way, employing a solution algorithm based on Newton’s method. Equations
(55)-(57) allow us to verify ex-post an optimum life-cycle allocation for the focal cohort born
at t0. While the numerical algorithm cannot determine in a precise way the optimal alloca-
tion for other cohorts, it nevertheless structures the allocation in a way that approximates
the optimum for all cohorts.

54



M
os

t c
ur

re
nt

 W
or

ki
ng

 P
ap

er
s 

pu
bl

is
he

d 
in

 th
e 

Se
rie

s 
- 

St
at

e 
D

ec
em

be
r 

20
17

Published Working Papers

WP 09/2017: Health insurance, endogenous medical progress, and health expenditure 
  growth
WP 08/2017: Medical Progress, Demand for Health Care, and Economic Performance
WP 07/2017: You can't always get what you want? A Monte Carlo analysis of the bias 
  and the efficiency of dynamic panel data estimators
WP 06/2017: Robots and the skill premium: an automation-based explanation of
  wage inequalities
WP 05/2017: Boosting Taxes for Boasting about Houses: Status Concerns in the 
  Housing Market
WP 04/2017: The Marriage Gap: Optimal Aging and Death in Partnerships
WP 03/2017: Redistributive effects of the US pension system among individuals with 
  different life expectancy
WP 02/2017: The Impact of Climate Change on Health Expenditures
WP 01/2017: Optimal investment and location decisions of a firm in a flood risk area 
  using Impulse Control Theory
WP 11/2016: Hyperbolic Discounting Can Be Good For Your Health
WP 10/2016: On the long-run growth effect of raising the retirement age
WP 09/2016: The importance of institutional and organizational characteristics for 
  the use of fixed-term and agency work contracts in Russia
WP 08/2016: A Structural Decomposition Analysis of Global and National Energy 
  Intensity Trends
WP 07/2016:  Natural Disasters and Macroeconomic Performance
WP 06/2016:  Education, lifetime labor supply, and longevity improvements
WP 05/2016:  The Gender Gap in Mortality: How Much Is Explained by Behavior?
WP 04/2016:  The implications of automation for economic growth and the labor 
  share of income
WP 03/2016:  Higher education and the fall and rise of inequality
WP 02/2016:  Medical Care within an OLG economy with realistic demography
WP 01/2016:  The Quest for Status and R&D-based Growth
WP 04/2015: Modelling the interaction between flooding events and  economic 
  growth
WP 03/2015: Revisiting the Lucas Model
WP 02/2015: The contribution of female health to economic development
WP 01/2015: Population Structure and Consumption Growth: Evidence from 
  National Transfer Accounts

 More working papers can be found at http://www.econ.tuwien.ac.at/wps/

Please cite working papers from the ECON WPS like this example: 
Freund, I., B. Mahlberg and A. Prskawetz. 2011. “A Matched Employer-Employee Panel Data Set for 
Austria: 2002-2005.” ECON WPS 01/2011. Institute of Mathematical Methods in Economics, Vienna 
University of Technology.



Vienna University of Technology Working Papers 
in Economic Theory and Policy
 

ISSN 2219-8849 (online)
http://www.econ.tuwien.ac.at/wps/

The Series “Vienna University of Technology Working Papers
in Economic Theory and Policy“ is published by the

Research Group Economics
Institute of Statistics and Mathematical Methods in Economics
Vienna University of Technology

D
ec

em
be

r 
20

17

Editorial Board

Alexia Fürnkranz-Prskawetz
Hardy Hanappi
Franz Hof

Contact

Research Group Economics
Institute of Statistics and Mathematical Methods in Economics

Vienna University of Technology

Wiedner Hauptstraße 8-10
1040 Vienna

Austria

Phone:       +43-1-58801-1053-  1
Fax:       +43-1-58801-1053-99
E-mail:      wps@econ.tuwien.ac.at




